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Abstract

In this paper, we prove the semilocality of some multi-anisotropic Sobolev
spaces, the density of smooth finite functions in those spaces when Sobolev
spaces generated by completely regular Newton polyhedrons and give some
examples showing that multi-anisotropic Sobolev space generated by a non-
regular Newton polyhedron is not semilocal.

1. Introduction

We use the following standard notation: N denotes the set of all

natural numbers N§ = Ny x...x Ny (where Ny = N U {0}) is the set of

all n-dimensional multi-indices, E" and R" are the n-dimensional

Euclidean spaces of points (vectors) x = (xy, ..., x,) and £=(&q, ..., &, ),
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respectively, R™*={¢:¢ e R", & 200 =1,..,n), R™0={¢: ¢ e R",
& ...&, # 0}

For ¢ R", x e E" and o e R™", we put |§|=\/§%+...+§%,

lo) = oy +...+a,, E* =g . g»,  and D* =D ...Dy",  where
1 9 . n
D:==— (j=1,..,n), Ny.
e L NG

Let A = {o/ = (oc{, ol )}1M be a finite set of points in R™*. By

the Newton polyhedron of the set A, we mean the minimal convex hull

(which is a polyhedron) ® = R(A) in R™" containing all points of A.

A polyhedron ® with vertices in R™" is said to be complete (see [17]

or [9]), if R has a vertex at the origin and one vertex (distinct from the

origin) on each coordinate axis of R™". The k-dimensional faces of a
polyhedron R are denoted by %i‘(z =1,..,M},k=0,1,...,n—1). The
set of 0-dimensional faces (vertices) of it we denote by RO,

In the sequel, the outward (with respect to ) normal to the hyper

plane of the support of the complete polyhedron R containing some face

%f and not containing any other face of dimension greater than k£ will

be called simply the outward normal to the face 5)%{“ . Thus, a given vector

A can serve as an outward normal to one and only one face of a convex

complete polyhedron .

The face RF(1 <i < M}, 0 <k <n-1) of a polyhedron R is said to

be principal (see [17]) if there is an outward normal with at least one
positive component among outward normals to the face. If moreover,

there is an outward normal with nonnegative (positive) components, the
face éRf is said to be regular (completely regular). A complete polyhedron

R is said to be regular (completely regular), if all its non-coordinate
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(n —1)-dimensional faces are regular (completely regular) (see [12], [2],
or [5], [7]).

Let R be a complete polyhedron with vertices in N{y, RC be the set of

its vertices, Q be a domain in E", and 1 < p < w. Denote by WgE(Q)

0
(respectively WgE (Q)) the set of functions u with the following bounded

norms (see [12] or [2], paragraph 13):

||”||WI‘§(Q) = O;||Da”||Lp(g)’ (1.1)
and respectively,
ledly® () = ZOHDG”"LP(Q)‘ (1.2)
aeR
For a vector m = (my, ..., m,) € E", m; > 0(j =1, ..., n) the collections

n
Al—{a:aeNo,%Ez <1

_J
m
and

Ay Z{(O,---,O)U[a:oceN{};|%|:1]}

the sets R°(4;) and R°(Ay) coincide, where the sets Wge(Al)(Q)
(respectively, Wge(AZ)(Q)) coincide with the isotropic Sobolev space
W,'(Q) when my =mg =...=m, (respectively with the anisotropic

Sobolev space ng(Q) when m; # m; for a pair (i, j)) with the norm

ey = D 1Dl oy (g = D~ 1D%uly () + I, o))

loj<m lof=m
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Therefore, the sets WgE (Q) with the arbitrary polyhedron # and with the
suitable norms we will call multi-anisotropic Sobolev spaces.

The notion of completely regular polyhedron, not being right
triangles, arises in connection with numerous problems in the theory of
partial differential equations, in particular when we study hypoelliptic

(see [11], Definition 11.1.2 ) or hyperbolic (see, for instance, [10] or [11],

Definition 12.3.3) differential operators (equations). Recall that a linear

differential operator P(D)= P(Dy, ..., D,) = Z:ymDOL with constant
o

coefficients (here the sum goes over a finite set of multi-indices

(P)={o € N{j; y4 # 0}) is called hypoelliptic if its complete symbol

(characteristic polynomial) P(§) = P(&q, ..., E,) = Zya?‘;a satisfies the
o

condition |[D*P(§)|/|P(E) — 0 as |[§] - o« for all 0 # o € Njj. Operator
P(D) is called N-hyperbolic (by Gording) if there exists a real number
7o such that P(§+tN) # 0 for all £ € R" and 7 < 1 (see, for instance,
[10] or [11], Definition 12.3.3). It is well known that an operator P(D) is

hypoelliptic if and only if all distributional solutions of the equation
P(D)u = 0 are infinitely differentiable (see [11], Theorem 11.1.3) and

that Cauchy problem is well posed for a large set of hyperbolic by

Gording operators and s-hyperbolic operators (see, for instance, [16], [9],

[21], [5], [7], [23] and others).

Operator P(D) is called almost hypoelliptic (see [13]) if there exists a
constant C > 0 such that [D*P(E)|/[|P(&)+1] < C for all a € N} and
£ e R".

The Newton polyhedron of the set (P)U O is called the Newton (or

characteristic) polyhedron of the operator P(D) (the polynomial P(£))
(see [13], [17], [9] or [19]).
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It turned out that there is a strong connection between the (almost)

hypoellipsity of operator P(D) and its Newton polyhedron: the Newton

polyhedron of a hypoelliptic operator is completely regular and an almost
hypoelliptic operator is regular. On the other hand, in [8], the following

statement was proved: let f and all its derivatives be square integrable on

E™ with a certain exponential weight. Then all square integrable (with

the same weight) solutions of the equation P(D)u = f have square
integrable derivatives with this weight if and only if the operator P(D) is

almost hypoelliptic. In other words, if f is infinitely differentiable, then
all distributional solutions of the equation P(D)u = f which belong to

the certain weighted multi-anisotropic Sobolev space Wg? s (the definition

see below in Section 3) are infinitely differentiable if and only if P(D) is
almost hypoelliptic.

Newton polyhedron generalizes the notion of degree of polynomial of
n variables and the notion of degree of partial differential equations.
There are great many applications of Newton polyhedron’s concept to
different fields of mathematics (see, for instance, [14]-[20] and others) but
in this work we will be concentrate only to (weighted) multi-anisotropic

Sobolev spaces generated by some completely regular Newton polyhedron.

Sobolev spaces play an outstanding role in modern analysis. In
particular, weighted Sobolev spaces are of great interest in many fields of
mathematics and first of all they arise in various issues of the theory of
partial differential equations. Many monographs and papers have
already been devoted to this topic. We mention only some of such works
which are closely related to the present paper. First of all, we refer to the
monographs [2], [11], and [22]. In these monographs, it i1s proved
semilocality of various (weighted) Banach spaces, in particular, classical

Sobolev spaces.

In the paper [6] by Carlson and Maz'ya, necessary and sufficient

conditions are given for a function from weighted Sobolev spaces (with a
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weight u which specifies a non trivial positive Radon measure) to be

approximated by test functions. Besov proved in [1], the density of the
infinitely differentiable finite functions in some weighted Sobolev space.

Burenkov proved in [3] (see also [4]), the density of finite functions in the

isotropic Sobolev space Wll, (Q) for any open set Q. In book [15], Kufner

deals with properties of weighted Sobolev spaces ngu(Q) the weight

function p being dependent on d(x, 0Q), the distance of points of the
domain Q from its boundary (or its part).
These works are devoted to isotropic (or anisotropic) weighted

Sobolev spaces, i.e., the spaces which are generated by a homogeneous

(or, respectively non homogeneous) vector m = (my, ..., m, ). Its Newton
polyhedrons are (n +1)-simplexes (geometrically, for example, in case
n = 2, they are right triangles with a vertex in the origin, isosceles or
not).

Here we consider general case when the Sobolev space is generated

by a Newton polyhedron of any kind.

It turned out that for a set A (say, polyhedrons i) the nature of a
multi-anisotropic Sobolev space can be essentially different from usual
(isotropic or anisotropic) Sobolev spaces. Therefore, a natural problem
arises to find conditions on a polyhedron R corresponding to the set A

and on a domain Q under which
(1) the norms (1.1) and (1.2) are equivalent, i.e., the spaces W;F(Q)
0
and W;,R (Q) coincide;

(2) the set Wge(Q) is a semilocal space. Recall that a functional

Banach space B(Q) is called semilocal if u € B(Q) and ¢ e Cgy(Q)
leades ou € B(Q) (see, for instance, [10], Definition 10.1.18);
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(8) the set of infinitely differentiable functions with compact supports

in Q is dense in multi-anisotropic Sobolev space W;,R (Q).

It turned out that there is a direct connection between the geometric

properties of a Newton polyhedron i and the answers to these questions.
We note in this regard that for Sobolev spaces W,'(Q) with different
domains Q there are definite answers to the listed questions (see, for
instance, [2], [4] or [15]). In particular, the spaces W,"(Q) and VT/IZn Q)

are isometrically isomorphic.
In this paper, we prove the following in main result

Theorem. Let R be a completely regular Newton polyhedron, g be an
exponential weight function, Q c E™ be a domain satisfying the

rectangle condition, and p e (1, ©). Then (a) the space W;)R(Q) is

semilocal, (b) the set C{ is dense in W;,R and ngs.

We present some examples when spaces WgE are not semilocal if they

are generated by non-regular Newton polyhedrons.

2. Equivalence of Norms and Semilocality of Multi-

Anisotropic Sobolev Spaces

We mention some statements on which we shall rely in the sequel.

Theorem I (I'in) (see [12] or [2], Theorem 13.3.2"). Let 1 < p < oo,

the domain Q satisfy the rectangle condition (see [12] or [2], p. 13.1) and
let the Newton polyhedron R(A) of a collection of multi-indices

A={e, ..., eNO} be completely regular. Then there exists a constant
C > 0 such that

Ny

ety ) = VE%Z(A)"DVUHLP(Q) < C;"De ] )
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forall u e Wge(Q).

Since the inverse inequality is obvious, this implies that for a
completely regular polyhedron and a domain Q satisfying the rectangle

condition, the norms (1.1) and (1.2) are equivalent, i.e., the spaces
0
W(Q) and W, (Q) coincide.
Definition 2.1 (see [2], p. 11). A measurable function ® is called

L, -multiplier (denoted by ® € M 5 ), if the transformation Tg, : L, — L,

defined by equality

1

T = -
q)f (27[)”/2

[ 0@FE 2 = ror]]

is bounded for all functions f € Cy’, i.e., there exists a constant C > 0

such that |Tof|, < C|f], forall f e CF.

Theorem L (Lizorkin, see [2], p. 11). A function ® € C*(R™°) is a
L, -multiplier (® € M5 if there exists a number M >0 such that
|§fl ...E)],CL”D]“(I)(QN <M for all € e R™°, where k = (ky, ..., k,) and k;
takes only valuesOand 1, j =1, ..., n.

Theorem M (Mikhailov, see [17]). For any set A of points

et ..., eNo ¢ R™O with the Newton polyhedron R = R(A), there exists a
constant C = C(R) > 0 such that

Ny ;
D <Y e, vEe R
i=1

aeR
Theorem 2.1. For any completely regular polyhedron R, any domain
Q c E" satisfying the rectangle condition and any p € (1, ) a space

W;R (Q) is semilocal.
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Proof. Let u e W;?(Q), ¢ € C7(Q) are fixed and o € R is arbitrary.

By the Leibnitz formula, we conclude that

D*(ug) = ZD“—ﬁuD%. 2.1)

B<a

Since the polyhedron R is completely regular, o -p € ® for any a €
and B < a. Therefore by Theorem I, there exists a constant C; > 0 such

that for all o« € ® and B < a

"Da_Bu"LP(Q) < Gl ) (2.2)

On the other hand, since ¢ € Cy(Q), there exists a constant Cy > 0
such that for all o € ® and B < a

|DPo(x)| < Cy, Vx e Q. (2.3)

It follows from relations (2.1)-(2.3) that there exists a constant C3 > 0
such that

< 9
ey < Colldhy

Le., ug e WgE(Q), which proves the theorem. O

Lemma 2.1. Let 1 < p < © and R = R(A) be the Newton polyhedron
of a collection of multi-indices A = {el, ..., ™o }. Then there exists a

constant C > 0 such that for all u € C§
Ny .
v e
D IDuly <€ D% ul . (2.4)
veR =1

Proof. Perform the Fourier transformation to functions u from Cy’.

Applying Theorem M and Parseval’s equality we obtain inequality (2.4)
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for p = 2. To prove the inequality (2.4) for p # 2 note that by the well-

known properties of Fourier transformation we have

F[D"u] = £"Flu]; F[D" u] = ¢ Flu] (j =1, ..., Ny).

A simple computation gives

No
F[D"u] = > ¢;(E)F[D°
j=1

where
. B §u+ej _ §V+€j .
®;() =& R (=1, .., No).
Zgge
k=1

To prove the inequality (2.4) for any p € (1, ©) it is sufficient (by the
definition of L, -multipliers) to show that ®; e MY (j =1, ..., Ny). For
this purpose we apply Theorem L.

The boundedness of {®;} leads immediately from Theorem M. Let us

show the boundedness of, for example, {|§1 |}
Again, a simple computation gives for each j =1, ..., Ny
90k
09

Gz = 4O +v)- 2Ze1 0w

k
Since [£2¢ /Q(g) < 1 (l<; =1,..., Ny) for all £ e R", this implies the
boundedness of |§1 |} By the same way one can prove the

boundedness of other derivatives. Lemma 2.1 is proved. O
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Lemma 2.2. Let the Newton polyhedron R = R(A) of a collection

A = {el, s eNO} of multi-indices be completely regular. The set of

infinitely  differentiable finite (in E") functions is dense in

WgE = Wge(En) if and only if the inequality (2.4) is valid for all functions
ue Wge.

Proof. Sufficiency. Let the inequality (2.4) is valid, ® € C5 be a

function of one variable such that o(t) = 0, outside of (0,1), and

1
Jo o(t)dt = 1. Fix a function u e ng and put

ns) = o J T [t G ute = 90

Then it is easy to verify that (see, for example, [2], p. 5): (1) uy € C”,

2) |u- uh”Wf — 0 as A — 0. Thus, the set of infinitely differentiable

functions is dense in W, and it remains to proof that every infinitely

p b
differentiable function u e Wg% can be approximated in W;R by

Cy’ - functions.

Let y, €eCy for any ke N, and O0<yi(x)<1 for all
x e E" yp(x)=1 for |x| <k, y,(x)=0 for |[x|>k+1,|D%(x) < M,

where the constant M > 0 does not depend on o € N} and k.

For any ke N and u e WgE NC”, let ¢ = yzu. It is clear that
¢ € Cy. On the other hand, it follows from Theorem 2.1 (recall that the

polyhedron R is completely regular, and obviously the space E" satisfies
the rectangle condition) that ¢, < Wga. Then applying Leibnitz’ formula

we get for a number C > 0
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Jo, j Jo, No
2 10 0%ouly, = 3007l = 3 071 =10y, > 6

orq _ v v
< sup [D[1 @)Y D ulp, (ol > &) < cYID ulp, (| > k).

x,k, o€ veR veR

Since u e Wge hence D"u € L,, v e R. Consequently, ||D“u||Lp(‘x‘>k) -0

p’
: No e e/

as k> o, ie., |u _(Pk"Wl‘f = zj:1||D u-D (Pk"Lp -0 as k > o

The sufficiency is proved.

Necessity. The inequality (2.4) is valid for functions from Cg by
Lemma 2.1. Since the set C{ is dense in W%, then the inequality (2.4) is

valid for all functions u e Wge. So Lemma 2.2 is proved. O

Combining Lemmas 2.1 and 2.2, we obtain

Theorem 2.2. Let the Newton polyhedron R of a set of multi-indices

el, . eNo pe completely regular. Then the set C{ is dense in Wg%.

We present two examples showing that the multi-anisotropic Sobolev
space Wg": (Q) corresponding to a non regular Newton polyhedron % may

be non semilocal. The first example related to a bounded and the second

to an unbounded domain.

Example 1. Let n = 2 and R be the Newton polyhedron of multi-
indices (0, 0), (1, 0), (0,1), (2,1) e N2. It is easy to see that the
quadrangle R is non regular (in the sense of Introduction) and the
projection (2, 0) of the vertex (2, 1) on the axis Oa; does not belong to R.

Let wu(x) = u(x, x9) = xf/?’ +x9, and A} ={-1<x <1,-1< x9

<1}. Then a simple computation shows that , D(I’O)u, D(O’l)u, D1y,

belong to Ly(A,), and Dy = %xl_z/ 3 ¢ Ly(Ay).
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Let v € Cg' (A1), ¥(x) = p(xy, x3) = x3 for x € Ayjy. Since DO Vy(x) = 1
for x € Ajjp, it follows that D(z’l)(w(x)u(x)) = %D(O’l)l/j(x)xl_z/3 = %

x1_2/3 ¢ Ly(A), le., vu ¢ WQ%(AI), which meanes that WQ%(AI) is not

semilocal.

Example 2. Let ® be as in Example 1, the function f € Cy (-1, 1)

being chosen such that
1
A(f) = I [£(t) + 5tf'(t) + 262 ")t = . 2.5)
-1

Let also u(x, y) = x2f(x¥x9), Q = {(x1, x9) € EZ, |xy] < 1, =0 < x5 < 0}
Then

Wl = [ [ 72t )dmdes = [ 371 [ 72 (afx ey
Q

\x1\<1 —00

= J xlz[ I fz(JCi‘zxz )dxg |dx; = jx%[ij(r)dr]dxl < o0,
|

‘x1‘<1 \x%xzkl

For DV%u, we have DV%u = 2x;f(x2xq ) + xZ(2x1 x5 )f(x2x5 ), where

Jj|x1f(x12x2)|2dx1dx2 = J [ J |f(x2xg)| P d(x2xy )]dx; < oo,
Q

ey |<1 \x12x2 |<1

[[ebiataaP 7 (ates Pdides = [ [ 2176 dr)de, < e
Q

lxq|<1 r<1
Thus, D"y e Ly(Q). Obviously, D(O’l)u(xl, x9) = x{f(x?x5), and so
DOy, ¢ Ly(Q). For DZ%% and D@Vy, we have respectively,

DZO%(xy, xq) = 2f(xPxy) + 10(xdxg )f (xdxg ) + d(xfxs )P f(xFxy),
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D@ Vu(xy, x9) = xf[12f (xExg ) + 18(xfx )f"(xfx; ) + 4(xdxg )2 " (xExs)].

Denoting by x; = &1, x2xg =1, Iy (r) = rk_lf(k_l)(r) (k=12 3) we
have for each £ =1, 2, 3,

11
_[_“x12|x12x2|2(k_1)|hk(x12x2 )% dxydxg = Ix12[_[|hk(r)|2dr]dx1 < o,
o} 53005

le., D&Yy ¢ Ls(Q). As by the condition (2.5)

1
II|D(2’O)u|2dx1dx2 = A(}‘)J‘d—xz1 = o0,
o 0

then D0y ¢ Ly(Q).

Taking a function pe Cj(Q), as in Example 1, where
Az © A € Q, we get D(2’1)(Wu) = v;czD(ZO)u +pDE Yy = DEO)y 4y
D@y for x e A1jz. One can see as above that p D@y e Ly(Q) and
since D@0y ¢ Ly(Q) hence D(Q’l)(wu) ¢ Ly(Q), ie, Wi (Q) is not
semilocal.

3. Weighted Multi-Anisotropic Sobolev Spaces

In this section, we consider a weighted multi-anisotropic Sobolev

space Wg? 5 = W;}fgs(E” ) with a weight function g, which is defined as
follows:

Let o € N be an arbitrary multi-index and g € C* = C*(E™) be

any positive function such that (a) for some positive constants x and &,

ple M < g(x) < e, |D%gs(x)| < KGS‘G‘gS(x) vx € R", (3.1)

where g5(x) = g(8x) for any & > 0.
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() Let T >0 and Sy = {x € R" : |x| < T}, then there exist positive
T

numbers o; and 69 such that for any 8 > 0 and x € R"

sup gs(x +y) < o185(x), Sup|g6(x +y) - g5(x)| < ogTgs(x).  (3.2)
yeG

Note that the regularization (averaging) of function

el if x| > 1,
H(x) =
el if x| < 1.

(see, for instance, [4], Section 5) can be taken as a function g.

Let 1< p <o and § > 0. Denote by L, 5 = (E™) the set of

Pga

locally integrable functions in E" with a bounded norms

bz, , = Igsly, = 1] JuGe) g3 )ax]e (3.3)

and for any completely regular polyhedron R with vertices in N§ denote
by ngg the set of functions u € L, 5 with a bounded norms
gy = D I(D*w)gslLy = DD ulLy,s. (3.4)
ael aeR

Similarly to the result concerning non-weighted Sobolev spaces (see

[2], Subsection 9.4 or [12], Theorem 2), the following result can be proved.

Lemma 3.1. Let R be any completely regular polyhedron and
v e N{ be any interior point of R. Then for any € > 0 there exists a

number C(g) > 0 such that

1D ULy < elidyn, + CEly o Vu e Wity (3.5)

(definitions of the corresponding norms see in (3.3) and (3.4)).
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Lemma 3.2. Let ® be any completely regular polyhedron. Then in

W?R

.55 one can introduce a norm

el wits = D 1D% (ugs Ly,
aelR
which is equivalent to the norm (3.4).
Proof. By the Leibnitz’ formula,

o

D D*(ugs) = Y [Dulgs + Y > Co D" PubPes. (3.6)

aeR aefR aeR|l=1

From (3.6), applying properties (3.1)-(3.2) of function g5 and Lemma 3.2,

we obtain

el wis < Cilyr,.  Vu e Wy, (3.7)

with a positive constant C; = C;(§). To prove the inverse inequality, we

can rewrite the formula (3.6) in the form

o]

AT ZD“(ugs)— ZZC D Publgs. (3.6)

aeR aeR =1

Since [p| > 0 and the polyhedron R is completely regular, all multi-
indices a — P in the right-hand side of (3.6') are interior points of R.
Then for any € > 0 we can use inequality (3.5) for the second sum in the

right-hand side of (3.6'), i.e., there exist some positive constants Cy and

C3 independing on ¢ such that for all u € ng 5

o

1> Zc D PubPys], < eColllyn, + CEICalul
aeR|p=1 ' ’

This (together with (3.6")) implies
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el < Il wits + eCalpdyn, + CEICallel, . (39)

Choose the number ¢ > 0 such that 1-¢Cy > 0, carry over the second

term in the right-hand side of (3.8) to the left-hand side and divide both
parts of received inequality by 1 — eCy > 0. Then we get

’
R
el < Calel wis + Csluly, o Vu € Wys,

with some positive constants C, and Cs. This (together with inequality

(3.7)) completes the proof.

Theorem 3.1. Let R be any completely regular polyhedron. The set
Cy = Cy(E™) is densein W;R:S.
Proof. Let u e ngg, Sy ={x e E" : |x| <1}, ¢ € CF(Sy), ¢(x) = 0,

I(p(x)dx =1,¢> 0 and ¢.(x) = ¢ "o(x / €). Now we put

U (x) = u*g, = J.u(x - Yo (y)dy = 8‘”Iu(x - y)oly / €)dy.

It is well known (see, for instance, [2], p. 5) that u, € C; and

e —u;, — 0 as e — 0. Tocomplete the proof of the theorem we shall
p

show that

flee — uﬁlleg —>0ase— 0. (3.9)
Since D*(u,) = (D%u),, we have

b walyr, = SAD @ - uly | = D%~ (D), 1,

aeR aek

< D I(D%u)gs —(D*u)gs), |, + D I((D*u)gs ), — (D“u)gslly,,-

aeR aek

(3.10)
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Since (D%u)gs € L, for u € L, and a € R, and a function in L, is

mean continuous (see, for instance, [2]), we get

Z"(Dau)ga ~(D%u)gs )1, — 0 as & — +0. (3.11)
aeR

According to the inequality (3.10), the proof will be completed by

showing that
A, = Z"((D“u)ga )g - (Dau)ggglle — 0 as ¢ > +0. (3.12)
o

Since ¢, € Cy'(S;) for any € > 0 hence
A, = D N[00 (x - ) g3l ~ ) - g () ]oer)v,
aeR
In view of the inequality (3.2 ), taking T = ¢, it follows that
4, < o5y [ (D) (x - y)gs(x - Vo),
oel

Applying here Young’s inequality, we get

A; <058 ) |(D%w)gsly, llecly,
p! el

acR

Since u e Wg% and ||(pg||L1 =1 for any ¢ > 0, it follows then A, — 0 as

¢ — 0, 1.e., the relation (3.12) is established. Moreover, the formula

(3.11) together with (3.12) proves the relation (3.9), and then the

theorem. O
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