ON THE LAFORGIA-NATALINI'S INEQUALITY FOR THE RIEMANN ZETA FUNCTION

Z. AHSAN ${ }^{1}$, P. LAM-ESTRADA ${ }^{2}$, J. LÓPEZ-BONILLA ${ }^{3}$ and R. LÓPEZ-VÁZQUEZ ${ }^{3}$

${ }^{1}$ Department of Mathematics
Aligarh Muslim University
Aligarh
India
${ }^{2}$ Departamento Matemáticas
ESFM, Edif. 9, Zacatenco
Instituto Politécnico Nacional (IPN)
México
${ }^{3}$ ESIME-Zacatenco-IPN
Col. Lindavista CP 07738
México DF
e-mail: jlopezb@ipn.mx

Abstract

We obtain the inequality $\zeta(s) \zeta(s+2)>[\zeta(s+1)]^{2}, s>1$, for the Riemann zeta function, which implies the inequality of Laforgia-Natalini [1].

2010 Mathematics Subject Classification: 11B68, 11M06, 26 D07.
Keywords and phrases: Bernoulli numbers, Riemann zeta function.
Received July 20, 2013; Revised September 11, 2013

1. Introduction

Laforgia-Natalini [1, 2] employ a generalization of the Schwartz inequality to deduce the following inequality for the Riemann zeta function [3]:

$$
\begin{equation*}
\frac{(s+1) \zeta(s)}{s \zeta(s+1)}>\frac{\zeta(s+1)}{\zeta(s+2)}, \quad s>1 . \tag{1}
\end{equation*}
$$

Here, we use known properties of $\zeta(s)$ [4] to show that

$$
\begin{equation*}
\frac{\zeta(s)}{\zeta(s+1)}>\frac{\zeta(s+1)}{\zeta(s+2)}, \quad s>1, \tag{2}
\end{equation*}
$$

which is stronger than (1), that is, (2) implies (1). It is unknown a closed expression for the Riemann zeta function valued at positive odd integers, then we consider very useful to obtain from (2) a narrow inequality for $\zeta(2 n+1), n=1,2, \ldots$, which implies a corresponding inequality for Faulhaber [5]-Bernoulli [6] numbers.

2. Formula of Titchmarsh

In [4] page 6, we find the expression

$$
\begin{equation*}
\frac{\zeta(s-1)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\Phi(n)}{n^{s}}, \quad s>2, \tag{3}
\end{equation*}
$$

where $\Phi(n)$ is the amount of numbers less than n and prime to n. Then for $s>1$ are valid the relations

$$
\frac{\zeta(s)}{\zeta(s+1)}=\sum_{n=1}^{\infty} \frac{\Phi(n)}{n^{s+1}} \quad \text { and } \quad \frac{\zeta(s+1)}{\zeta(s+2)}=\sum_{n=1}^{\infty} \frac{\Phi(n)}{n^{s+2}},
$$

whose all terms are positive and $\frac{1}{n^{s+1}}>\frac{1}{n^{s+2}}$, thus each term in $\frac{\zeta(s)}{\zeta(s+1)}$ is greater than the corresponding term in $\frac{\zeta(s+1)}{\zeta(s+2)}$, therefore (2) is correct for $s>1$. Besides, $\frac{s+1}{s}>1$, then (2) implies (1).
3. Inequalities for $\zeta(2 n+1), n=1,2, \ldots$

If in (2), we use $s=2 n$ and the result of Euler (1735) [3, 4]

$$
\begin{equation*}
\zeta(2 n)=-(-1)^{n} \frac{(2 \pi)^{2 n}}{2(2 n)!} B_{2 n}, \quad n=1,2, \ldots \tag{4}
\end{equation*}
$$

with the Faulhaber [5]-Bernoulli [6] numbers

$$
\begin{equation*}
B_{0}=1, B_{2}=\frac{1}{6}, B_{4}=B_{8}=\frac{-1}{30}, \quad B_{6}=\frac{1}{42}, \quad B_{10}=\frac{5}{66}, \ldots \tag{5}
\end{equation*}
$$

we deduce the following inequality for Riemann zeta function at odd integers:

$$
\begin{equation*}
\zeta(2 n+1)<\frac{(2 \pi)^{2 n+1}}{2^{\frac{3}{2}}(2 n)!}\left[-\frac{B_{2 n} B_{2 n+2}}{(n+1)(2 n+1)}\right]^{1 / 2}, \quad n=1,2, \ldots \tag{6}
\end{equation*}
$$

For example, if in (6), we employ $n=1,2$ and the values (5), then

$$
\zeta(3)<1.334297702, \quad \zeta(5)<1.049330278
$$

in accordance with the values $\zeta(3)=1.202056903$ and $\zeta(5)=1.036927755$ reported in the literature.

In [4] page 191 is the inequality

$$
\begin{equation*}
\frac{1}{\zeta(s)} \leq \frac{\zeta(s)}{\zeta(2 s)}, \quad s>1 \tag{7}
\end{equation*}
$$

where we may use $s=2 n+1$ and (4) to obtain that

$$
\begin{equation*}
(2 \pi)^{2 n+1}\left[\frac{B_{4 n+2}}{2(4 n+2)!}\right]^{1 / 2} \leq \zeta(2 n+1), \quad n=1,2,3, \ldots \tag{8}
\end{equation*}
$$

which for $n=1,2$ implies the correct inequalities

$$
1.008634256 \leq \zeta(3), \quad 1.000497164 \leq \zeta(5)
$$

Thus, the expressions (6) and (8) give us an interval for $\zeta(2 n+1)$ and also the following inequality for Faulhaber-Bernoulli numbers:

$$
\begin{equation*}
2(n+1)(2 n)!B_{4 n+2}<-4^{n}(4 n+1)!!B_{2 n} B_{2 n+2} \tag{9}
\end{equation*}
$$

For example, (9) can be verified with the values (5). The relations (2), (6), (8), and (9) are not in the literature.

4. Conclusion

Employing known relations [4] for Riemann zeta function it is possible to obtain, in elementary manner, the inequality (2), which implies the result of Laforgia-Natalini [1]. Besides, the approach here presented leads to an inequality for $\zeta(2 n+1), n=1,2, \ldots$, expressions (6) and (8), and the corresponding inequality (9) for Bernoulli numbers.

References

[1] A. Laforgia and P. Natalini, Turan-type inequalities for some special functions, J. Ineq. Pure Appl. Math. 7(1) (2006), Art. 22.
[2] B. Sroysang, Two inequalities for the Riemann zeta function, Mathematica Aeterna 3(1) (2013), 21-24.
[3] J. Stopple, A Primer of Analytic Number Theory, Cambridge University Press, 2003.
[4] E. C. Titchmarsh, The zeta-function of Riemann, Cambridge University Press, 1930.
[5] J. Faulhaber, Academiae Algebrae, 1631.
[6] J. Bernoulli, Ars Conjectandi, 1713

