GENERALIZED k-JACOBSTHAL AND k-JACOBSTHAL-LUCAS NUMBERS

GOSPAVA B. DJORDJEVIĆ and SNEŽANA S. DJORDJEVIĆ

Department of Mathematics
Faculty of Technology
University of Niš
16000 Leskovac
Serbia
e-mail: gospava48@ptt.rs
gospava48@gmail.com
College for Textile
16000 Leskovac
Serbia
e-mail: snezanadjordjevic1971@gmail.com

Abstract

In this note, we consider the following numbers: $\left\{J_{n, m}(k)\right\}$-the generalized k-Jacobsthal numbers and $\left\{j_{n, m}(k)\right\}$-the generalized k-Jacobsthal-Lucas numbers. Also, we introduce the incomplete numbers $\left\{J_{n, m}^{r}(k)\right\}$ and $\left\{j_{n, m}^{r}(k)\right\}$. Next, we introduce and consider the sequences of numbers: $\left\{J_{n, m}^{l}(k)\right\}$-the l-th convolution of the sequence $\left\{J_{n, m}(k)\right\}$ and $\left\{j_{n, m}^{s}(k)\right\}$-the s-th convolution of the sequence $\left\{j_{n, m}(k)\right\}$.

$\overline{2010 \text { Mathematics Subject Classification: 11B83, 11B37, 11B39. }}$
Keywords and phrases: incomplete numbers, generating function, recurrence relation, explicit formula, convolution.
Communicated by Haik G. Ghazaryan.
Received October 22, 2015; Revised November 23, 2015

1. Introduction and Definitions

In papers [1], [2], Djordjević considered two classes of polynomials: $J_{n, m}(x)$ - the generalized Jacobsthal polynomials and $j_{n, m}(x)$ - the generalized Jacobsthal-Lucas polynomials. The particular cases of these polynomials are so-called Jacobsthal polynomials $J_{n}(x)$ and JacobsthalLucas polynomials $j_{n}(x)$, which were investigated by Horadam [7].

If $x=1$ in $J_{n, m}(x)$ and $j_{n, m}(x)$, we get the generalized Jacobsthal numbers $J_{n, m}$ and the generalized Jacobsthal-Lucas numbers $j_{n, m}$ (see [3]). Namely, in [3], authors defined the incomplete generalized Jacobsthal numbers $J_{n, m}^{k}$ by

$$
\begin{equation*}
J_{n, m}^{k}=\sum_{r=0}^{k}\binom{n-1-(m-1) r}{r} 2^{r}, \quad 0 \leq k \leq[(n-1) / m], n, m \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

with

$$
\begin{gather*}
J_{n, m}^{[(n-1) / m]}=J_{n, m}, \quad J_{n, m}^{k}=0, \quad 0 \leq n<m k+1 \tag{1.2}\\
J_{m k+l, m}^{k}=J_{m k+l-1, m}, \quad l=1, \ldots, m \tag{1.3}
\end{gather*}
$$

and the incomplete generalized Jacobsthal-Lucas numbers $j_{n, m}^{k}$ by

$$
\begin{equation*}
j_{n, m}^{k}=\sum_{r=0}^{k} \frac{n-(m-2) r}{n-(m-1) r}\binom{n-(m-1) r}{r} 2^{r}, \quad 0 \leq k \leq[n / m] \tag{1.4}
\end{equation*}
$$

with

$$
\begin{gather*}
j_{n, m}^{[n / m]}=j_{n, m}, \quad j_{n, m}^{k}=0, \quad 0 \leq n<m k \tag{1.5}\\
j_{m k+l, m}^{k}=j_{m k+l-1, m}, \quad l=1, \ldots, m \tag{1.6}
\end{gather*}
$$

where $n, m \in \mathbb{N}$.

Motivated essentially by the work by Pintér and Srivastava [10] and by the recent works [8] and [9], in this note, we define the generalized k-Jacobsthal numbers $J_{n, m}(k)$ and the generalized k-Jacobsthal-Lucas numbers $j_{n, m}(k)$, respectively, by the following recurrence relations:

$$
\begin{equation*}
J_{n, m}(k)=k J_{n-1, m}(k)+2 J_{n-m, m}(k), \tag{1.7}
\end{equation*}
$$

with

$$
J_{0, m}(k)=0, \quad J_{n, m}(k)=k^{n-1}, \quad n=1, \ldots, m-1,(n \geq m, n, m \in \mathbb{N}) ;
$$

and

$$
\begin{equation*}
j_{n, m}(k)=k j_{n-1, m}(k)+2 j_{n-m, m}(k), \tag{1.8}
\end{equation*}
$$

with

$$
j_{0, m}(k)=2, \quad j_{n, m}(k)=k^{n}, \quad n=1, \ldots, m-1,(n \geq m, n, m \in \mathbb{N}) .
$$

From the recurrence relations (1.7) and (1.8), we get the following explicit formulas:

$$
\begin{equation*}
J_{n, m}(k)=\sum_{i=0}^{[(n-1) / m]}\binom{n-1-(m-1) i}{i} k^{n-1-m i} \cdot 2^{i} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{n, m}(k)=\sum_{i=0}^{[n / m]} \frac{n-(m-2) i}{n-(m-1) i}\binom{n-(m-1) i}{i} k^{n-m i} \cdot 2^{i} \tag{1.10}
\end{equation*}
$$

Let $J_{n, m}(k)$ be the coefficients of a power series, and let's consider the corresponding analytic function $F_{m}(t)$, defined by

$$
\begin{equation*}
F_{m}(t)=J_{0, m}(k)+J_{1, m}(k) \cdot t+J_{2, m}(k) \cdot t^{2}+\cdots \tag{1.11}
\end{equation*}
$$

The function (1.11) is called the generating function of the k-Jacobsthal numbers (see [8], [9]).

Using the relation (1.11) and the initial conditions in the relation (1.7), we get

$$
\begin{equation*}
F_{m}(t)=\left(1-k t-2 t^{m}\right)^{-1}=\sum_{n=1}^{\infty} J_{n, m}(k) t^{n-1} \tag{1.12}
\end{equation*}
$$

Also, in the similar manner, we find that

$$
\begin{equation*}
G_{m}(t)=\frac{2-k t}{1-k t-2 t^{m}}=\sum_{n=0}^{\infty} j_{n, m}(k) t^{n} \tag{1.13}
\end{equation*}
$$

is the generating function of the sequence $\left\{j_{n, m}(k)\right\}$.

2. Incomplete Generalized \boldsymbol{k}-Jacobsthal Numbers

Firstly, we define the incomplete generalized k-Jacobsthal numbers $J_{n, m}^{r}(k)$ by

$$
\begin{equation*}
J_{n, m}^{r}(k)=\sum_{i=0}^{r}\binom{n-1-(m-1) i}{i} k^{n-1-m i} \cdot 2^{i}, \quad 0 \leq r \leq[(n-1) / m] \tag{2.1}
\end{equation*}
$$

with

$$
\begin{gather*}
J_{n, m}^{[(n-1) / m]}(k)=J_{n, m}(k), \quad J_{n, m}^{r}(k)=0(0 \leq n<m r+1) \tag{2.2}\\
J_{m r+l, m}^{r}(k)=J_{m r+l-1, m}(k) \quad(l=1, \ldots, m) \tag{2.3}
\end{gather*}
$$

Also, we define the incomplete generalized k-Jacobsthal-Lucas numbers $j_{n, m}^{r}(k)$ by

$$
\begin{equation*}
j_{n, m}^{r}(k)=\sum_{i=0}^{r} \frac{n-(m-2) i}{n-(m-1) i}\binom{n-(m-1) i}{i} k^{n-m i} \cdot 2^{i} \tag{2.4}
\end{equation*}
$$

with

$$
\begin{equation*}
j_{n, m}^{[n / m]}(k)=j_{n, m}(k), \quad j_{n, m}^{r}(k)=0(0 \leq n<m r) \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
j_{m r+l, m}^{r}(k)=j_{m r+l-1, m}(k) \quad(l=1, \ldots, m) . \tag{2.6}
\end{equation*}
$$

In this paper, we find the generating functions of the incomplete numbers $J_{n, m}^{r}(k)$ and $j_{n, m}^{r}(k)$.

The following known results ([10], [3]) will be required in our investigation of the generating function of the incomplete generalized k-Jacobsthal numbers $J_{n, m}^{r}(k)$, defined by (2.1). For the theory and applications of the various methods and techniques for deriving generating functions of special functions and polynomials, we may refer the interested reader to a recent treatise on the subject of generating functions by Srivastava and Manocha [11]. It is not difficult to prove the following result (see [3]).

Lemma 2.1. Let $\left\{s_{n}\right\}_{n=0}^{\infty}$ be a complex sequence satisfying the following nonhomogeneous recurrence relation:

$$
\begin{equation*}
s_{n}=k s_{n-1}+2 s_{n-m}+r_{n}, n \geq m(n, m \in \mathbb{N}) \text {, } \tag{2.7}
\end{equation*}
$$

where $\left\{r_{n}\right\}$ is a given complex sequence. Then the generating function $S(t)$ of the sequence $\left\{s_{n}\right\}$ is

$$
\begin{equation*}
S(t)=\left(s_{0}-r_{0}+\sum_{i=1}^{m-1} t^{i}\left(s_{i}-k s_{i-1}-r_{i}\right)+G(t)\right)\left(1-k t-2 t^{m}\right)^{-1}, \tag{2.8}
\end{equation*}
$$

where $G(t)$ is the generating function of the sequence $\left\{r_{n}\right\}$.
Our first result on generating function is contained in Theorem 2.1 below.

Theorem 2.1. The generating function of the incomplete generalized k-Jacobsthal numbers $J_{n, m}^{r}(k)$ is given by

$$
\begin{equation*}
R_{m}^{r}(t)=t^{m r+1} S_{m}^{r}(t) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{aligned}
S_{m}^{r}(t)= & \left(J_{m r, m}(k)+\sum_{i=1}^{m-1} t^{i}\left(J_{m r+i, m}(k)-k J_{m r+i-1, m}(k)\right)-\frac{2^{r+1} t^{m}}{(1-k t)^{r+1}}\right) \\
& \times\left(1-k t-2 t^{m}\right)^{-1}
\end{aligned}
$$

Proof. Using the explicit formula (2.1) and the recurrence relation (1.7), we get

$$
\begin{aligned}
& J_{n, m}^{r}(k)-k J_{n-1, m}^{r}(k)-2 J_{n-m, m}^{r}(k) \\
& =\sum_{i=0}^{r}\binom{n-1-(m-1) i}{i} k^{n-1-m i} \cdot 2^{i}-k \sum_{i=0}^{r}\binom{n-2-(m-1) i}{i} k^{n-2-m i} \cdot 2^{i} \\
& \quad-2 \sum_{i=0}^{r}\binom{n-1-m-(m-1) i}{i} k^{n-1-m-m i} \cdot 2^{i} \\
& =\sum_{i=0}^{r}\binom{n-1-(m-1) i}{i} k^{n-1-m i} \cdot 2^{i}-\sum_{i=0}^{r}\binom{n-2-(m-1) i}{i} k^{n-1-m i} \cdot 2^{i} \\
& \quad-\sum_{i=1}^{r+1}\binom{n-2-(m-1)}{i-1} k^{n-1-m i} \cdot 2^{i} \\
& = \\
& -\frac{(n-1-m-(m-1) r)!}{r!(n-1-m-m r)!} k^{n-1-m-m r} \cdot 2^{r+1}
\end{aligned}
$$

So, having in view (2.2), we get

$$
s_{0}=J_{m r+1, m}^{r}(k), \quad s_{1}=J_{m r+2, m}^{r}(k), \ldots, s_{m-1}=J_{m r+m, m}^{r}(k)
$$

and

$$
s_{n}=J_{m r+n+1, m}^{r}(k)
$$

Suppose also that

$$
r_{0}=r_{1}=\cdots=r_{m-1}=0 \quad \text { and } \quad r_{n}=\binom{n-m+r}{n-m} k^{n-m} \cdot 2^{r+1}
$$

Then, for the generating function $G(t)$ of the sequence $\left\{r_{n}\right\}$, we can show that

$$
G(t)=\frac{2^{r+1} t^{m}}{(1-k t)^{r+1}}
$$

Thus, in view of the above lemma, the generating function $S_{m}^{r}(t)$ of the sequence $\left\{s_{n}\right\}$ satisfies the following relation:

$$
\begin{aligned}
S_{m}^{r}(t) \cdot\left(1-k t-2 t^{m}\right)=J_{m r, m}(k)+ & \sum_{i=1}^{m-1} t^{i}\left(J_{m r+i, m}(k)-k J_{m r+i-1, m}(k)\right) \\
& -\frac{2^{r+1} t^{m}}{(1-k t)^{r+1}}
\end{aligned}
$$

So

$$
R_{m}^{r}(t)=t^{m r+1} \cdot S_{m}^{r}(t)
$$

3. Incomplete Generalized \boldsymbol{k}-Jacobsthal-Lucas Numbers

For the incomplete generalized k-Jacobsthal-Lucas numbers $j_{n, m}^{r}(k)$, defined by (2.4), we can prove the following generating function.

Theorem 3.1. The generating function of the incomplete generalized k-Jacobsthal-Lucas numbers $j_{n, m}^{r}(k)\left(r \in \mathbb{N}_{0}\right)$ is given by

$$
\begin{align*}
& F_{m}^{r}(t) \cdot\left(1-k t-2 t^{m}\right)=\sum_{n=0}^{\infty} j_{n, m}^{r}(k) t^{n}=t^{m r} j_{m r-1, m}(k) \\
& \quad+t^{m r}\left(\sum_{l=1}^{m-1} t^{l}\left(j_{m r+l-1, m}(k)-k j_{m r+l-2, m}(k)\right)-\frac{2^{r+1} t^{m}(2-t)}{(1-k t)^{r+1}}\right) \tag{3.1}
\end{align*}
$$

Proof. Similarly to the proof of Theorem 2.1, from the explicit formula (2.4), it follows that

$$
j_{n, m}^{r}(k)-k j_{n-1, m}^{r}(k)-2 j_{n-m, m}^{r}(k)=-\frac{n-m+2 r}{n-m+r}\binom{n-m+r}{n-m} k^{n-m} \cdot 2^{r+1}
$$

Let

$$
s_{0}=j_{m r-1}, m(k), \quad s_{1}=j_{m r, m}(k), \ldots, s_{m-1}=j_{m r+m, m}(k),
$$

and

$$
s_{n}=j_{m r+n+1, m}(k) .
$$

Suppose also that

$$
r_{0}=r_{1}=\cdots=r_{m-1}=0 \text { and } r_{n}=\frac{n-m+2 r}{n-m+r}\binom{n-m+r}{n-m} k^{n-m} \cdot 2^{r+1} .
$$

Then, using the known method based upon the above lemma, we find that

$$
G(t)=\frac{2^{r+1} t^{m}(2-t)}{(1-k t)^{r+1}},
$$

is the generating function of the sequence $\left\{r_{n}\right\}$. Now, we can easily get (3.1).

Remark 1. Specially, for $m=2$, Theorem 3.1 yields the generating function for the incomplete numbers $j_{n}(k)$:

$$
F_{2}^{r} \cdot\left(1-k t-2 t^{2}\right)=t^{2 r}\left(j_{2 r-1}(k)+t\left(j_{2 r}(k)-k j_{2 r-1}(k)\right)-\frac{2^{r+1} t^{2}(2-t)}{(1-k t)^{r+1}}\right)
$$

4. Convolutions of the Generalized k-Jacobsthal and k-Jacobsthal-Lucas Numbers

Here we define the sequences of numbers $\left\{J_{n, m}^{l}\right\}$-the l-th convolution of the generalized k-Jacobsthal numbers, and $\left\{j_{n, m}^{s}\right\}$-the s-th convolution of the generalized k-Jacobsthal-Lucas numbers, where l and s are some nonnegative integers.

The l-th convolution of the generalized k-Jacobsthal numbers $\left\{J_{n, m}^{l}(k)\right\}$ is given by the following generating function:

$$
\begin{equation*}
F_{l}(t)=\left(1-k t-2 t^{m}\right)^{-(l+1)}=\sum_{n=1}^{\infty} J_{n, m}^{l}(k) t^{n-1}, \quad l \geq 0 . \tag{4.1}
\end{equation*}
$$

The s-th convolution of the generalized k-Jacobsthal-Lucas numbers $\left\{J_{n, m}^{s}(k)\right\}$ is defined by

$$
\begin{equation*}
G_{s}(t)=\left(\frac{2-k t}{1-k t-2 t^{m}}\right)^{s+1}=\sum_{n=0}^{\infty} j_{n, m}^{s}(k) t^{n}, \quad s \geq 0 . \tag{4.2}
\end{equation*}
$$

Next, from (4.1), using the known method, we find the following explicit formula for the sequence $\left\{J_{n, m}^{l}(k)\right\}$:

$$
\begin{equation*}
J_{n, m}^{l}(k)=\sum_{i=0}^{[(n-1) / m]} \frac{(l+1)_{n-1-(m-1) i}}{i!(n-1-m i)!} k^{n-1-m i} \cdot 2^{i}, \tag{4.3}
\end{equation*}
$$

where

$$
(\alpha)_{n}=\alpha(\alpha+1) \cdots(\alpha+n-1), \quad \alpha \neq 0,-1, \cdots,-(n-1) .
$$

So, from (4.2), we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} j_{n, m}^{s}(k) t^{n} & =(2-k t)^{s+1}\left(1-k t-2 t^{m}\right)^{-(s+1)} \\
& =\sum_{i=0}^{s+1}\binom{s+1}{i} 2^{s+1-i}(-1)^{i} k^{i} \sum_{n=1}^{\infty} J_{n, m}^{s}(k) t^{n+i-1}
\end{aligned}
$$

Hence, we conclude that

$$
J_{n, m}^{s}(k)=\sum_{i=0}^{s+1}\binom{s+1}{i} 2^{s+1-i}(-k)^{i} J_{n+1-i, m}^{s}(k)
$$

Next, using the known formulas (see [12]):

$$
(\alpha)_{n-k}=\frac{(-1)^{k}(\alpha)_{n}}{(1-\alpha-n)_{k}},(n-k)!=\frac{(-1)^{k} n!}{(-n)_{k}}, \quad(\alpha)_{n+k}=(\alpha)_{n}(\alpha+n)_{k}
$$

we find that

$$
\begin{aligned}
\frac{(l+1)_{n-1-(m-1) i}}{(n-1-m i)!} & =\frac{(-1)^{(m-1) i}(l+1)_{n-1}(1-n)_{m i}}{(1-l-n)_{(m-1) i}(-1)^{m i}(n-1)!} \\
& =\frac{(-1)(l+1)_{n-1}(1-n)_{m i}}{(1-l-n)_{(m-1) i}(n-1)!}
\end{aligned}
$$

and

$$
\begin{aligned}
J_{n, m}^{l}(k) & =\sum_{i=0}^{[(n-1) / m]} \frac{(-1)^{i}(l+1)_{n-1}(1-n)_{m i}}{i!(n-1)!(1-l-n)_{(m-1) i}} k^{n-1} \cdot\left(\frac{2}{k^{m}}\right)^{i} \\
& =\frac{(l+1)_{n-1}}{(n-1)!} k^{n-1} \sum_{i=0}^{[(n-1) / m]} \frac{(-1)^{i}(1-n)_{m i}}{i!(1-l-n)_{(m-1) i}} \cdot\left(\frac{2}{k^{m}}\right)^{i}
\end{aligned}
$$

Now the explicit formula (4.3) can be written in the following form, for $n:=n+1$:

$$
J_{n+1, m}^{l}(k)=\frac{(l+1)_{n}}{n!} k^{n}{ }_{m} F_{m-1}\left[\begin{array}{cc}
\frac{-n}{m}, \frac{1-n}{m}, \ldots, \frac{m-1-n}{m} ; & \frac{-2}{k^{m}} \\
\frac{-l-n}{m-1}, \frac{1-l-n}{m-1}, \ldots, \frac{m-2-l-n}{m-1}
\end{array}\right]
$$

where

$$
{ }_{m} F_{m-1}\left[\begin{array}{l}
a_{1}, a_{2}, \ldots, a_{m} ; z \\
b_{1}, b_{2}, \ldots, b_{m-1}
\end{array}\right]=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n} \ldots\left(a_{m}\right)_{n}}{\left(b_{1}\right)_{n}\left(b_{2}\right)_{2} \ldots\left(b_{m-1}\right)_{n}} \cdot \frac{z^{n}}{n!},
$$

is the generalized hypergeometric function (see [11]).

5. Partial Derivatives and Convolution Numbers

In this section, we consider again the numbers $J_{n, m}^{l}(k)$, on the other manner. Namely, we find the connection of the l-th convolution and the partial derivative with respect to k of the sequence $J_{n, m}(k)$.

Let

$$
J_{n, m}^{(l)}(k)=\frac{\partial^{l}\left\{J_{n, m}(k)\right\}}{\partial k^{l}} .
$$

Differentiating the relation (1.12) one by one, l-times, with respect to k, we get the following relation:

$$
\begin{equation*}
J_{n, m}^{(l)}(k)=l!J_{n-l, m}^{l}(k) . \tag{5.1}
\end{equation*}
$$

One result is given by the following statement.
Theorem 5.1. For $m \geq 1$ it holds

$$
\begin{equation*}
J_{n+m, m}^{(m)}(k)+2(m-1) J_{n, m}^{(m)}(k)=(m-1)!(n+m-1) J_{n, m}^{m-1}(k) . \tag{5.2}
\end{equation*}
$$

Proof. Using the relation (5.1) in the left side of the relation (5.2), and using (4.3), we get

$$
\begin{aligned}
J_{n, m}^{(m)}(k) & +2(m-1) J_{n, m}^{(m)}(k)=m!J_{n, m}^{m}(k)+2(m-1) m!J_{n-m, m}^{m}(k) \\
& =m!\left(J_{n, m}^{m}(k)+2(m-1) J_{n-m, m}^{m}(k)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & m!\sum_{i=0}^{[(n-1) / m]} \frac{(m+1)_{n-1-(m-1) i}}{i!(n-1-m i)!} k^{n-1-m i} \cdot 2^{i} \\
& +2(m-1) m!\sum_{i=0}^{[(n-1-m) / m]} \frac{(m+1)_{n-1-m-(m-1) i}}{i!(n-1-m-m i)!} k^{n-1-m-m i} \cdot 2^{i} \\
= & m!\sum_{i=0}^{[(n-1) / m]} \frac{(m+1)_{n-1-(m-1) i}}{i!(n-1-m i)!} k^{n-1-m i} \cdot 2^{i} \\
& +(m-1) m!\sum_{i=0}^{[(n-1) / m]} \frac{(m+1)_{n-2-(m-1) i}}{(i-1)!(n-1-m i)!} k^{n-1-m i} \cdot 2^{i} \\
= & (m-1)!(m+n-1) \sum_{i=0}^{[(n-1) / m]} \frac{(m)_{n-1-(m-1) i}}{i!(n-1-m i)!} k^{n-1-m i} \cdot 2^{i} \\
= & (m-1)!(m+n-1) J_{n, m}^{m-1}(k) .
\end{aligned}
$$

The result, more general than the previous one, is given by the next theorem.

Theorem 5.2. For some $r \geq 1$, the following relation holds:

$$
\begin{equation*}
J_{n+m, m}^{(r)}(k)+2(m-1) J_{n, m}^{(r)}(k)=(r-1)!(m+n-1) J_{n+m-r, m}^{r-1}(k) . \tag{5.3}
\end{equation*}
$$

Proof. The proof is similar to the proof of Theorem 5.1.
Remark 2. If $m=2$, the formula (5.3) becomes

$$
\begin{equation*}
J_{n+2-r, 2}^{r-1}(k)=\frac{1}{(r-1)!(n+1)}\left(J_{n+2,2}^{(r)}(k)+2 J_{n, 2}^{(r)}(k)\right) . \tag{5.4}
\end{equation*}
$$

Applying the formula (5.4) for $r=1,2,3$, we get some members of the sequence $\left\{J_{n, m}^{r}(k)\right\}$, which are given in Tables 1 and 2 .

Table 1. Numbers $\boldsymbol{J}_{n, 2}^{r}(k)$

n	$r=0$	$r=1$
0	0	
1	1	1
2	k	$2 k$
3	$k^{2}+2$	$3 k^{2}+4$
4	$k^{3}+4 k$	$4 k^{3}+12 k$
5	$k^{4}+6 k^{2}+4$	$5 k^{4}+24 k^{2}+12$
6	$k^{5}+6 k^{3}+12 k$	$6 k^{5}+40 k^{3}+48 k$
7	$k^{6}+10 k^{4}+24 k^{2}+8$	$7 k^{6}+60 k^{4}+120 k^{2}+32$
8	$k^{7}+12 k^{5}+40 k^{3}+32 k$	$8 k^{7}+84 k^{5}+240 k^{3}+160 k$
9	$k^{8}+14 k^{6}+60 k^{4}+80 k^{2}+16$	$9 k^{8}+112 k^{6}+420 k^{4}+480 k^{2}+80$

Table 2. Numbers $J_{n, 2}^{r}(k)$

n	$r=2$	$r=3$
0	0	
1	1	0
2	$3 k$	0
3	$6 k^{2}+6$	1
4	$10 k^{3}+24 k$	$4 k$
5	$15 k^{4}+60 k^{2}+24$	$105 k^{2}+8$
6	$21 k^{5}+120 k^{3}+120 k$	$20 k^{3}+40$
7	$28 k^{6}+210 k^{4}+360 k^{2}+80$	$35 k^{4}+120 k^{2}+40$
8	$36 k^{7}+336 k^{5}+840 k^{3}+480 k$	$56 k^{5}+280 k^{3}+240 k$
9	$45 k^{8}+504 k^{6}+1680 k^{4}+1680 k^{2}+240$	$84 k^{6}+560 k^{4}+840 k^{2}+160$

Remark 3. For $m=3$, the formula (5.3) becomes

$$
\begin{equation*}
J_{n+3,3}^{(r)}(k)+4 J_{n, 3}^{(r)}(k)=(r-1)!(n+2) J_{n+3-r, 3}^{r-1}(k) \tag{5.5}
\end{equation*}
$$

Hence, for $r=0,1,2,3$, from (5.5), we get the some initial members of the sequence $\left\{J_{n, 3}^{r}(k)\right\}$, which are given in Tables 3 and 4.

Table 3. Numbers $J_{n, 3}^{r}(k)$

n	$r=0$	$r=1$
0	0	
1	1	1
2	k	$2 k$
3	$k^{2}+2$	$3 k^{2}$
4	$k^{3}+2$	$4 k^{3}+4$
5	$k^{4}+4 k$	$5 k^{4}+12 k$
6	$k^{5}+6 k^{2}$	$6 k^{5}+24 k^{2}$
7	$k^{6}+8 k^{3}+4$	$7 k^{6}+40 k^{3}+12$
8	$k^{7}+10 k^{4}+12 k$	$8 k^{7}+60 k^{4}+48 k$
9	$k^{8}+12 k^{5}+24 k^{2}$	$9 k^{8}+84 k^{5}+120 k^{2}$

Table 4. Numbers $J_{n, 3}^{r}(k)$

n	$r=2$	$r=3$
0	0	
1	1	1
2	$3 k$	$4 k$
3	$6 k^{2}$	$10 k^{2}$
4	$10 k^{3}+6$	$20 k^{3}+8$
5	$15 k^{4}+24 k$	$35 k^{4}+40 k$
6	$21 k^{5}+60 k^{2}$	$56 k^{5}+120 k^{2}$
7	$28 k^{6}+120 k^{3}+24$	$84 k^{6}+280 k^{3}+40$
8	$36 k^{7}+210 k^{4}+120 k$	$120 k^{7}+560 k^{4}+240 k$
9	$45 k^{8}+336 k^{5}+360 k^{2}$	$165 k^{8}+1008 k^{5}+840 k^{2}$

References

[1] G. B. Djordjević, Generalized Jacobsthal polynomial, Fibonacci Quart. 38 (2000), 239-243.
[2] G. B. Djordjević, Derivatives sequences of generalized Jacobsthal and JacobsthalLucas plynomials, Fibonacci Quart. 38 (2000), 334-338.
[3] G. B. Djordjevic and H. M. Srivastava, Incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers, Math. and Computer Modelling 42 (2005), 1049-1056.
[4] G. B. Djordjević and G. V. Milovanović, Special Classes of Polynomials, Faculty of Technology, Leskovac, 2014.
[5] G. B. Djordjević, Mixed convolutions of the Jacobsthal type, Appl. Math. and Comput. 186 (2007), 646-651.
[6] G. B. Djordjević and S. S. Djordjević, Convolutions of the generalized Morgan-Voyce polynomials, Appl. Math. and Comput. 259 (2015), 106-115.
[7] A. F. Horadam, Jacobsthal representation numbers, Fibonacci Quart. 34 (1996), 40-54.
[8] D. Jhala, K. Sisodiya and G. P. S. Rathore, On some identities for k-Jacobsthal numbers, Int. Journal of Math. Analysis 12 (2013), 551-556.
[9] D. Jhala, G. P. S. Rathore and K. Sisodiya, Some identities and generating function for the k-Jacobsthal-Lucas sequence, Advanced Studies in Contemporary Math. 24(4) (2014), 475-482.
[10] Á. Pintér and H. M. Srivastava, Generating functions of the incomplete Fibonacci and Lucas numbers, Circ. Mat. Palermo 2(48) (1999), 591-596.
[11] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited Chichester), John Wiley and Sons, New York, 1984.
[12] E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960.

