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Abstract

This paper investigates the relations which appear between two higher-order
Lagrange functions joined by a transformation of gauge type. Also, in the second
part of this work, the change of variables in Hamiltonian and the generating
function via higher-order Lagrangians are studied.

1. Introduction

The classical Lagrangian dynamics is governed by second order
ordinary differential equations or second order partial differential
equations (the multi-time case) of Euler-Lagrange type with boundary
conditions. The Euler-Lagrange ODEs (PDEs) solutions are called
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extremals or critical points of the functionals considered (simple,
multiple, curvilinear integrals). The integrating functions, named
Lagrange functions or Lagrangians, are differentiable functions with
vector argument. On the other hand, the classical Hamiltonian dynamics
is formulated using first order ordinary differential equations or first
order partial differential equations (the multi-time case) arising from
second order Euler-Lagrange ODEs (PDEs). This transition is made
using the Legendre transformation. For more details regarding the multi-
time Lagrange, Hamilton and Hamilton-Jacobi dynamics, the reader is
directed to Udriste and Tevy [11], [12], Treanta [8], [10], Motta and
Rampazzo [4], and Rochet [5].

The present work represents a natural continuation of a recent paper
(Treanta [8]), where only the case of second-order Lagrangians is
considered. Thus, we extend, unify and improve several results in the
current literature. Other different but connected ideas to this subject can
be read in Miron [3], Krupkova [2], Roman [6], Ibragimov [1], Treanta
and Varsan [9].

2. Gauge Transformation and Moments Governed
by Higher-Order Lagrangians

In this section, we shall study the relations which appear between
two Lagrange functions joined by a gauge transformation.

The single-time case. Let us consider two single-time higher-order
Lagrangians,

L5, (), xD@), 2@, .., 2P@), =12

with ¢ € [tg, ;] < R, x() € R", k > 2 a fixed natural number, joined by a

transformation of gauge type (adding a total derivative), i.e.,

2-1+ %f(t, x(0), x D), =2, .., <5 D)

_p Lo o Wi, o @i _of i
=L + o + . x + 8x(1)j X +..+ ax(’“‘l)f X

’

j=1n
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The summation over the repeated indices is assumed. Then, the

corresponding moments ptlu', pgl, =1,k i =1, n, satisfy the following
relations:
o _ ol _ ol L4 of o
Pai =2 (@) ~ @i T dt gla)i | ppla-li
zp(lli+i oF O -1k,
dt pylaki  pyla-1)i
g _ oL _ ol of 1 of

Phi =2 = 5 T o PR G 47 b
The previous computations allow us to establish the following result.

Proposition 2.1. Two single-time higher-order Lagrangians,

satisfying I* = L} + j (t x(t), x(l)(t) x(z)(t) (k_l)(t)), where L2,

Ck+1

L', and f are considered -class functions, produce the same Euler-

Lagrange ODEs, i.e.,

or* d or’ | d° ar L 1)k dk oL
oxt db ol T g2 @i ko)
_ol 4 ert  d* ol L1 )kdk oL 1
oxt  dt oMW T g2 @i dib ox®i’ T
or
k+1 k+1 _
i( o L Sy L
e -1 ox (r 1) l dtr—l ax(r—l)i ’ >
Proof. By direct computation, we get
oL* d or*  d* o L) d ar?

y Cdt 8x(1)i " W 8x(2)i k ax(k)i

r-1 oL* kdk oL?
;(_) dma(m) +(=1) N
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aL2 N oLt d of of
Z( 1) o [a i T dt gD | 20

r dF (oLt of
+(=1) ( ) ax(k—l)ij

~ aL1 d of r1 d’Y oLt p dboort
= Z( 1) 1 1 +(-1) 2tF o

ox' dt ox'
Cpdt o dof g d O
+=1) a1 dt gyt (1) dt® a1
k 1
71 oy (-1 1)1 de ax(k)z
_£_1£+££_ cenppdi el
- oxt At oM g2 5@ 7T drk ax Wi’ S

and the proof is complete.

The multi-time case. Consider two multi-time higher-order

Lagrangians,
Lc(t’ x(t)’ Yoy (t)’ s Xagay (t))’ =12

that are joined by a transformation of gauge type (adding a total

derivative), 1.e.,
L* = L' + D (¢, x(t), %6y (), -.s Xy ay ()

n no. noo. n .

(. ix{1 LC/ W 1 A

N oxd axd MM n(og, dg) gyl ajoon
o ajog

=I'+

1 o T i1
. o ol T]’ n - ’ ’ ] ’
n(o, ..., ap_1) oy 101
1.0k -1

[
S

(2.1)
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Here t= (¢, ..., t")e Q. © BR™ (see Q; , as the hyper-

parallelepiped determined by diagonal opposite points ¢, {; from R™),

ox oFx .

t) = t), ..., t) = ——(t), a; 1, 2, ..., , ] =
xal() 8t0‘1 () x(ll_,_(lk() ato‘l ”_atak () Ovj E{ m} J
1Lk x: Q4 < R™ 5 R", x = (xi), iefl, 2 ..,n}, and n(oq,ay,...,

1, +1,.  +...+1 |
o) = Loy * Loy | (for more detail, see Saunders [7] and
(1011 +lgy +ot 1, i

Treanta [8]). The summation over the repeated indices is assumed.

« o1...005 O1...005 . T, . P
The corresponding moments pill 7, pi21 T, j=1Lk1i=1 n,

satisfy the following relations:

"y or? or! 0
;1 aj — - = , + - (ann)
ox? - ox! o ox! .
o1...0; 01...0; ay...0;
ar...005 afn 1 6fa]
=p; 7 +Dy— + . , J=Lk-1,
8xl ) n((ll,---,aj—l)axl X
op..a; o0
p(xl...(xk _ aLQ — aLl + 1 afak
i2 axi axi n(Ot1, e (Xk—l) axi
og...ay aq...0p 1.0 -1
O
— pgl...(lk + 1 af , ] = k
I’L((Xl, ey U“k—l) 8xl
a1...0E -1

Taking into account the previous computations, we establish the

following result.
Proposition 2.2. Two multi-time higher-order Lagrangians,

satisfying L? = L' + Dy f1(t, x(t), xq, (¢), ..., *q, a, (), where I’ 1,

and f are considered CH* _class functions, produce the same PDEs, i.e.,
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or? or* 2 oL 3 oL
i Dal N Dalaz ~ i Da1a2a3 ~i
ox 0. X ox
oq a0 1003
2
k nk oL
+..+(=1) Doqaz---ak -
a1og... .0
1 1 1 1
= ZLL - D(ll aal; D21a2 a aLL - D(?Ll(lz()tg a zaL
X x(xl xOL]_OLQ x(xl(xz(xg
E nyk oL} .
+..+(-1) Doqaz-.-ak - , 1€l 2 .., n},
axa1a2...ak
or, shortly,
k 2 k 1
r N 6L r aL . PR
Z(_ 1) Da10~2---“r o i - Z(_ 1) Da1(x2...(xr i P EEL
r=0 x(x a a r=0 6x(x a a
1 2“. r 1 2... r

if and only if the total divergence of f is defined as
Dy f1(t, x(t), 2, (£), oy Xy o1 ()

:£+afnxj 6]‘?1 xl o+ a].m x/

ot axd N ayd oam J “102n
o o102
0 n . - . R
+...++xél o’ n=Lm, j=1n.
o g
o1...0E -1

Otherwise, (i.e., if the total divergence of f is defined as in (2.1)) the

following equality is true (i.e., L? and L produce the same PDEs):

k 2 k 1
e, Sy, ez,
—~ op...0p 6xl - O...0, axz

o...0p r o...0p
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if and only if

k-1
S ot I
orn a i
r=2 o1...0
k o
ey
n((xl, R a-rfl) o1 Qp 10 axl ’
r=3 o

iefl, 2 ..,n}
Proof. Direct calculation.

Corollary 2.1. Let us consider that the relation (2.1) is verified. Then,

I? and I} produce the same multi-time Euler-Lagrange PDEs, i.e.,

2
Z( y—2Lt p o
n(ag, ..., a,) @Oy i

’
r=

op...0p
Z( Ve a) P L iefl, 2 .., n)
n(oq, ..., o r
1 ax(xl...(xr
if and only if
k—
Z D+ of"
~ n(al’ - r) 4 oyt
= oy...0
k o
_ Z(_ 1)r+1 1 1 Dr af "
e (o, cooy 0 ) B0, coey OLp_y ) M1-Oro10y (%C(i)t ’
1--0p 1
i=1,n.

Remark 2.1. The previous multi-time case takes into account the

total divergence of f. As well, we can consider multi-time higher-order

Lagrangian 1-forms, ‘Z(t, x(t), Xy @), ..., Xy (t))dtg, e=1 2 and
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the transformation of gauge type becomes L‘E = L%; + Def(¢, x(t), xq, (),

s Koy apy #), ¢ =1, m.

o or...0; . T 7 . T
/ Li=Lki=1n,

The corresponding moments pi(:;l'l" s Pic g

satisfy the following relations:

2 1
P . S S
.2 ox* - oxt . xt ,
(11...(1] (11...0(] (11...(1]
_ p(ll (X] i D 8f 1 af 8(lp+1...(lj
lq,l C axz A n(al’ . y (Xp) axl C
0]...0j ay...0p
.] = 1’ k - 1’ D= ] - 15
oL? oL
0q...0 ._ C _ C 0
Piga = = 7 = t (Dcf)
axotl...otk xocl...ock op...0%
1 of 1
_ oy...0f Ar _
=p. + . o, j=k
ic,1 n(ocl, R U“k—l) axl ¢
1.0 1
. . . oLt oLt of .
Using the previous relations and — = —= + D¢ —, we establish the

oxt  ox' ox
following result.
Proposition 2.3. Two multi-time higher-order Lagrangian 1-forms,
satisfying L% = L}; + D¢f, where L%, ng, and f are considered C**1 _class

functions, produce the same PDEs, i.e.,

k 2 k 1
oL oL J—
r - ¢ _ r ¢ .
: ‘,(_l) Dalag...urai—_ : :(_1) D(xl(x2...ari—’ 1=1n,
r=0 X r=0 6x

o109...0p 0q09...0p
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if and only if

k—

Z prt of
;) q1a2 oG axi
a1og...0p
k
e d g
et n(ay, ..., ) 1020 g g

0102...0p
= 1,_n, p=r-1.
Proof. Direct computation.

Corollary 2.2. The multi-time higher-order Lagrangian 1-forms, L%

and L}, joined by a transformation of gauge type, produce the same

maulti-time Euler-Lagrange PDEs, i.e.,

, L
Z( 1) T’L((Xl,. r) .

..o
) " ox!
ay...0p

oL .
Z( by n(ocl , o )Dr ———, iefl,2 .., n),
s rs Oy

if and only if

k-1
(_ 1)7" ; r+1 af
o n(al, ceey r) oG axl
- 1.0
k
_ Z _1)r+1 1 1 D of §ep+1---Or
et n(og, ..., o) n(og, ..., 0y ) OO gyl ¢ ’
= 01...0p

:I,_n,pzr—l.
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2.1. The adding of the dissipative forces

The single-time case. Let us consider the function

Rl x@), xV@), .., xP@). k21,

that determines the generalized dissipative force — . Such type of

ox i

forces, for a fixed k, changes the ODEs of Hamiltonian type as

: a1 d* _ _O0H R d* i oH
Z(_ 1) a pal - i - (k)l ) a X = Er .
a=1 dt ox ox dt Pai

We obtain

dH _ oH  y  OH dpe  OH
dt il g dt ot

k
_ a d? OR | )i , ()i Pai , OH
- LZ;(‘ W Pai =G [ T g Y

_ (_ oL _ ﬂﬂjxa)i + x@)i 9Pai  OH
oxct ax(k)l dt ot

(summation over the repeated indices!) and % = 0 implies

aH _ (@) @Pai _(OL . OR ) (i
dt_OQx dt _5xi+5x(k‘)ix '

The multi-time case. Let assume that the function

R(t, x(t), xq, (@), .o\ Xy, (), k21,

determines the generalized multi-time oy ..., -dissipative force

—i, where oy, ..., a; €{l,2,..., m} are fixed. The PDEs of

o’

ay...0

Hamiltonian type becomes
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YRTVIFTIES.
ox o
i _ oH i Tk in
a1...0; ap;xl.,.aj ’ ’ ’
Here, p. 1% = 1 ,aL ,i1efl,2,...,n},jell,2,..
L n(ag, ..., o) it
a1 OL]

aj €il, 2, ..., m}.
Computing the total derivative of H, we find
k OL]_...OLJ'

oH ox' oH  op; , oH
ox' ot as ot

D.H =

4 a1...005
]:1 apl J

k
1 i o...0 5 8R ]
= Z(_ 1)]D(‘]11(1]pl - L xé

1
J=1 axocl. o)
k o
N Z oH op; 7 oH
= op; ots oS’

and o _ 0 implies
ot*

k .
_ OoR oL | i i op;

11

’ k}’
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3. The Change of Variables in Hamiltonian and the Generating
Function via Higher-Order Lagrangians

alk

The single-time case. Let H = xl DPqi — L be the Hamiltonian and

k a
Y L i) = - a0, ), s 00, B
po dt ox

a ,
d iy = OH

(x(t), p1@), ..., pp(t), t), i=1,n,
e P (), p1(2) k() 1)

the associated ODEs. Let assume that we want to pass from our
coordinates (xi, Dii» ---» Pii» t) to the coordinates (Xi, P, ..., Py, t)

with the following change of variables (diffeomorphism):

XT] = Xn(xL’ pli? ey pkzy t)’ Pl'r' = Pl‘r'(xl’ plia ceey pkz, t),

vy Py = Py (2", D1js oo D t), mefl, 2., 0

Then, the Hamiltonian H(x, py, ..., p;, t) changes in K(X,P,,...,P,,t).

The above change of variables is called canonical transformation if there

is a Hamiltonian, K(X, P,, ..., P, t), such that the associated ODEs

k a
;e 0 pal®) =~ 25 (X0 B () R0 1),

da

dt®

oK
OP,;

Xi(t) = (X(@), P(t), ..., P.(t). ¢), i=1,n,

and the ODEs (3.1) take place simultaneously. This thing is possible if

the functions

2 (Opi(6) ~ H(0), py(0) .., (o), 1),
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and

X (0P (6) = K(X(0), By(o). ... (o). ¢).
differ by a total derivative % (t, x(¢), x(l)(t), s x(k_l)(t)).

Lemma 3.1. If the Lagrangians
Ly =x%Yp, —H, Ly:=X%p. K,
produce the same Euler-Lagrange ODEs, then the change of variables
(x', Pris oo Dis 1) (X%, Py, ooy Py t), i =1,
is a canonical transformation.

Proof. Using Proposition 2.1, the result is obvious.

The function W is called the (higher-order) generating function of the

canonical transformation.

The multi-time case. Let H = x(il1 o ?1"“" — L be the Hamiltonian
ey
and
TN ‘ oH
Mol ) = - ), p @), ), 1), 3.2)
=) J ox
w0 =—H (), p), ..., P @), 1), i=1, 7,
0.0 apfxl...(xj
l

the associated PDEs. The summation over the repeated indices is

assumed. Let assume that we want to pass from our coordinates
(«f, pit, ., pit % 1) to the coordinates (X, P2, ..., PM%k p)

with the following change of variables (diffeomorphism):

XM= X" (xt, pial, ey p?l“'ak, t), P#l = Pnal(xl, p;xl, e p?l“'ak, t),

oy PESk = POk (gl p L pie S ) e {19, ).

2
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Then, the Hamiltonian H(x, p*, ..., p®*1""%  t) changes in
K(X, P™, ..., PU% g).

The above change of variables is called canonical transformation if there

is a Hamiltonian, K(X, P*1, ..., P%% t), such that the associated
PDEs

k
Z(— 1)J+1Dé1majpf‘1“'°‘f t) = - ;;I({i (X(@), P (1), ..., P% (1), t),
7=

i _ aK (e5] ap...0f . T
Xal...aj (t) = —ap,“1~~-°‘j (X(@), P™(¢), ..., P t).,t), i=1n,

12

and the PDEs (3.2) take place simultaneously. This thing is possible if

the functions

x(x o (t)pl ](1) li (:‘( )’ p (t)y ey p Ok (t) t )
1---G; 1 y 5
and

Xl o OB @) - K(X@), P, ... P (0), 1),

differ by a total divergence DCWC(x(t), Xy (8)s s Xoy gy, , (), 2),

¢ =1, m, and
k-1
Z(_ 1)1‘ 1 Dr+1 aWC
(o, oy 0 ) 010G 50

r=1 oq...0p

k o

_ Z(_ 1)r+1 1 1 Dr ow"r
~ n(ag, ..., o) n(ag, ..., G,_q) %--0r-1% 5. ’

0.0 1

i =1, n.
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Lemma 3.2. If the Lagrangians

(1]_...(1]'

ol - i ap...0
Ll T x(ll...(xjpi N H’ L2 - X(ll.‘ (X'P' - K’

-0 1
produce the same multi-time Euler-Lagrange PDEs [see Ly = L + DCWC,
k-1
Z(_ l)r 1 Dr+1 aWC
~ n(otl, .

ey Otr) ag...0pG axl
Op...0p

k o
=yt — VT isim),
(0, ooey Oy ) PO, wuvy Opg)  F1Or1%r 5y
r=2 0.0 1

then the change of variables
(xi, p?l, ey p?l"'%, t)w(Xi, Pial, s Pial"'a’“, t), i=1n,

is a canonical transformation.
Proof. Using Corollary 2.1, the result is obvious.

The vector function W 1is called the (higher-order) multi-time

generating function of the canonical transformation.
4. Conclusion

In the present paper, we have studied (in a mathematical framework
governed by higher-order Lagrangians) the relations which appear
between two Lagrangians joined by a gauge transformation, the change
of variables in Hamiltonian and the generating function. In this way, we

have extended and improved the results in Treanta [8].
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