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Abstract 

This paper concerns the study of the numerical approximation for the following 
boundary value problem: 

( ) ( ) ( ) ( )( )
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where ( ) ( )∞→∞ ,0,0:f  is a 1C  convex, nondecreasing function, 

( ) ( ) [ ]( ) ( ) ( ) ( )xuuuCusf
dsfs 000

2
001 ,01,01,1,1,,1lim =′=−′−∈∞<∞=−+ ∫

∞
−→  

is symmetric for [ ] ( ) [ ].0,1,0,1,1 0 −∈≤′−∈ xxux  The potential ( )( ) ,1,11 −∈ Cb  

( )( ) ( ) ( ) ( ) ( ) .01,01,1,1,0,1,1 =′=−′−∈>− bbxxb  We find some conditions 
under which the solution of a semidiscrete form of the above problem quenches 
in a finite time and estimate its semidiscrete quenching time. We also prove 
that the semidiscrete quenching time converges to the real one when the mesh 
size goes to zero. A similar study has been also investigated taking a discrete 
form of the above problem. Finally, we give some numerical experiments to 
illustrate our analysis. 

1. Introduction 

Consider the following boundary value problem: 

( ) ( ) ( ) ( )( ) ,0,11,,,, ><<−−=− txtxufxbtxutxu xxt  (1) 

( ) ( ) ,0,0,1,0,1 >==− ttutu xx   (2) 

( ) ( ) ,11,00, 0 ≤≤−>= xxuxu   (3) 

where ( ) ( )∞→∞ ,0,0:f  is a 1C  convex, nondecreasing function, 

( ) ( ) [ ]( ) ( ) ( ) ( )xuuuCusf
dsfs 000

2
0

0
1 ,01,01,1,1,,1lim =′=−′−∈∞<∞=−+ ∫

∞
−→  

is symmetric for [ ] ( ) [ ].0,1,0,1,1 0 −∈≤′−∈ xxux  The potential 

( )( ) ( ) ( ) ( ) ( ) .01,01,1,1,0,1,11 =′=−′−∈>−∈ bbxxbCb  

Definition 1.1. We say that the classical solution u of (1)-(3) 
quenches in a finite time, if there exists a finite time qT  such that 

( ) 0min >tu  for [ ),,0 qTt ∈  but 

( ) ,0lim min =→ tuqTt  

where ( ) ( ).,min 11min txutu x≤≤−=  The time qT  is called the quenching 

time of the solution u. 

The theoretical study of solutions for semilinear parabolic equations, 
which quench in a finite time has been the subject of investigations of 
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many authors (see [2], [3], [4], [7], [14], [15], [20], and the references cited 
therein). Local in time existence of a classical solution has been proved 
and this solution is unique. 

It is not hard to prove the local in time existence of a classical 
solution, which is unique (see [3], [4], and [20]). Also in [3], Boni has 
proved that the solution of (1)-(3) quenches in a finite time, and its 
quenching set is located on the boundary of the domain .Ω  In [7], Fila 
and Levine have considered the above problem in the case, where 

( ) ( ) puufx −=∈ ,1,0  with .0>p  They have proved that the solution u 

quenches in a finite time at the point .1=x  For quenching results of 
other problems, one may consult the following references [5], [14], [16], 
[17]. 

In addition, it is shown that if the initial data at (3) satisfies 

( ) ( ) ( ) ( )xAuxuxbxu pp −− −≤−′′ 000  in [ ],1,0  where ( ],1,0∈A  then the 

classical solution u of (1)-(3) quenches in a finite time T and we have the 
following estimates: 

( ( )) ( ( ))
( ) ,1

min
1

min 1
011

1
011

+
≤≤

+

+
≤≤−

+
≤≤−

pA
xuTp

xu p
x

p
x  

( )( ) ( ) ( ) ( )( ) ( ) 1
1

1
1

1
1

1
1

11 min ++++ −+≤≤−+ pppp tTpBtutTpA  for ( ),,0 Tt ∈   

(see, for instance, [4] and [7]). 

In this paper, we are interested in the numerical study of the 
phenomenon of quenching. Under some assumptions, we show that the 
solution of a semidiscrete form of (1)-(3) quenches in a finite time and 
estimate its semidiscrete quenching time. We also prove that the 
semidiscrete quenching time goes to the real one when the mesh size goes 
to zero. Similar results have been also given for a discrete form of (1)-(3). 
Our work was motivated by the papers in [1], [3], and [20]. In [1] and 
[20], the authors have used semidiscrete and discrete forms for some 
parabolic equations to study the phenomenon of blow-up (we say that a 
solution blows up in a finite time, if it reaches the value infinity in a 
finite time). In [3], some schemes have been used to study the 
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phenomenon of extinction (we say that a solution extincts in a finite time, 
if it becomes zero after a finite time for equations without singularities). 
One may also consult the papers in [11]-[13], where the authors have 
studied theoretically the dependence with respect to the initial data of 
the blow-up time of nonlinear parabolic problems. Concerning the 
numerical study, one may find some results in [18], [19], [23], and [24], 
where the authors have proposed some numerical schemes for computing 
the numerical solutions for parabolic problems, which present a solution 
with one singularity. 

This paper is organized as follows. In the next section, we give some 
results about the discrete maximum principle. In the third section, under 
some conditions, we prove that the solution of a semidiscrete form of     
(1)-(3) quenches in a finite time and estimate its semidiscrete quenching 
time. In the fourth section, we prove the convergence of the semidiscrete 
quenching time. In the fifth section, we study the results of Sections 3 
and 4 taking a discrete form of (1)-(3). Finally, in the last section, we give 
some numerical results to illustrate our analysis. 

2. Properties of a Semidiscrete Problem 

In this section, we give some results about the discrete maximum 
principle. We start by the construction of a semidiscrete scheme as 

follows. Let I be a positive integer and let .1
Ih =  Define the grid ,ihxi =  

Ii ≤≤0  and approximate the solution u of the problem (1)-(3) by the 

solution ( ) ( ( ) ( ) ( ))TIh tUtUtUtU ,,, 10 …=  of the following semidiscrete 

equations: 

( ) ( ) ( ( )) ( ),,0,0,2 h
qiii

i TtIitUftUdt
tdU

∈≤≤β−=δ−  (4) 

( ) ,0,00 IiU ii ≤≤>ϕ=  (5) 

where 

( ) ( ) ( ) ( ) ,11,2
2

112 −≤≤
+−

=δ −+ Ii
h

tUtUtUtU iii
i  
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( ) ( ) ( ) ( ) ( ) ( ) .22,22
2

12
2

01
0

2
h

tUtUtU
h

tUtUtU II
I

−
=δ

−
=δ −  

Here ( )h
qT,0  is the maximal time interval on which ( ) ,0inf >tUh  

where 

( ) ( ).min
0inf tUtU iIih ≤≤

=  

When the time h
qT  is finite, we say that the solution ( )tUh  of (4)-(5) 

quenches in a finite time and the time h
qT  is called the quenching time of 

the solution ( ).tUh  

The following lemma is a semidiscrete form of the maximum 
principle: 

Lemma 2.1. Let ( ) ([ ) )10 ,,0 +∈α I
h TCt R  and ([ ) )11 ,,0 +∈ I

h TCV R  

be such that 

( ) ( ) ( ) ( ) ( ),,0,0,02 TtIitVttVdt
tdV

iii
i ∈≤≤≥α+δ−  (6) 

( ) .0,00 IiVi ≤≤≥  (7) 

Then ( ) ( ).,0,0,0 TtIitVi ∈≤≤≥  

Proof. Let 0T  be any quantity satisfying the inequality TT <0  and 

define the vector ( ) ( ),tVetZ h
t

h
λ=  where λ  is such that 

( ) [ ].,0,0for0 0TtIiti ∈≤≤>λ−α  

Set ( ) .min inf0 0 tZm hTt≤≤=  Since ( )tZh  is a continuous vector on 

the compact [ ],,0 0T  there exist { }Ii ,,00 …∈  and [ ]00 ,0 Tt ∈  such 

that ( ).00 tZm i=  We observe that 
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( ) ( ) ( )
,0lim 00

0
0 000 ≤

−−
=

→ k
ktZtZ

dt
tdZ ii

k
i  (8) 

( ) .00
2

0 ≥δ tZi  (9) 

From (6), we obtain the following inequality: 

( )
( ) ( ( ) ) ( ) .0000

20
000

0 ≥λ−α+δ− tZttZdt
tdZ

iii
i  (10) 

We deduce from (8)-(10) that ( ( ) ) ( ) ,000 00 ≥λ−α tZt ii  which implies that 

( ) .000 ≥tZi  Therefore, ( ) 0≥tVh  for [ ]0,0 Tt ∈  and the proof is 

complete.   

Another form of the maximum principle for semidiscrete equations is 
the following comparison lemma: 

Lemma 2.2. Let ( ).,0 RRR ×∈ Cf  If ([ ) )11 ,,0, +∈ I
hh TCWV R  are 

such that 

( ) ( ) ( ( ) ) ( ) ( ) ( ( ) ),,, 22 ttWftWdt
tdWttVftVdt

tdV
ii

i
ii

i +δ−<+δ−  

( ),,0,0 TtIi ∈≤≤  

( ) ( ) ,0,00 IiWV ii ≤≤<  

then ( ) ( ) ( ).,0,0, TtIitWtV ii ∈≤≤<  

Proof. Let ( ) ( ) ( )tVtWtZ hhh −=  and let 0t  be the first ( )Tt ,0∈  

such that ( ) 0>tZh  for [ ),,0 0tt ∈  but ( ) 000 =tZi  for a certain 

{ }.,,00 Ii …∈  We see that 

( ) ( ) ( )
,0lim 00

0
0 000 ≤

−−
=

→ k
ktZtZ

dt
tdZ ii

k
i  

( ) .00
2

0 ≥δ tZi  
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Therefore, we have 

( )
( ) ( ( ) ) ( ( ) ) ,0,, 00000

20
000

0 ≤−+δ− ttVfttWftZdt
tdZ

iii
i  

which contradicts the first strict inequality of the lemma and this ends 
the proof.  

3. Quenching Solution 

In this section, under some assumptions, we show that the solution 

hU  of (4)-(5) quenches in a finite time and estimate its semidiscrete 

quenching time. We need the following result about the operator .2δ  

Lemma 3.1. Let 1+∈ I
hU R  be such that .0>hU  Then, we have 

( )( ) ( ) .0,22 IiUUfUf iii ≤≤δ′≥δ  

Proof. Applying Taylor’s expansion, we find that 

( ) ( ) ( ) ( )i
ii

iii f
h

UUUUfUf θ′′
−

+δ′=δ +
2

2
12  

( ) ( ) ,0,2

2
1 Iif
h

UU
i

ii ≤≤η′′
−

+ −  

where iθ  is an intermediate value between iU  and iiU η+ ,1  is the one 

between 1−iU  and .,,,, 001111 IIIIi UUUUU θ=ηθ=η== −+−  Use 

the fact that 0>hU  to complete the rest of the proof.   

The statement of the result about solutions, which quench in a finite 
time is the following: 

Theorem 3.1. Let hU  be the solution of (4)-(5) and assume that there 

exists a positive constant ( ]1,0∈A  and the initial data at (5) satisfies 

( ) ( ) .0,2 IiAff iiii ≤≤ϕ−≤ϕβ−ϕδ   (11) 
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Then, the solution hU  quenches in a finite time h
qT  and we have the 

following estimate: 

( ) .1 fin

0 σ
σ≤ ∫

ϕ

f
d

AT
hh

q  

Proof. Since ( )h
qT,0  is the maximal time interval on which 

( ) ,0inf >tUh  our aim is to show that h
qT  is finite and satisfies the 

above inequality. Introduce the vector ( )tJh  defined as follows: 

( ) ( ) ( ( )) .0, IitUAfdt
tdUtJ i

i
i ≤≤+=  

A straightforward calculation gives 

( ) ( ( )) ( ( ( ))) .0,222 IitUfAdt
dUtUfApUdt

dU
dt
dJdt

dJ
ii

i
ii

i
i

i ≤≤δ−′−δ−=δ−  

From Lemma 3.1, we have ( )( ) ( ) ,0,22 IiUUfUfdelta iii ≤≤δ′≥  which 

implies that 

( ) ( ) ( ) .0,222 IiUdt
dUUAfUdt

dU
dt
dJdt

dJ
i

i
ii

i
i

i ≤≤δ−+δ−≤δ−  

Using (4), we arrive at 

( ) ( ).,0,0,2 h
qiiii

i TtIiJUfJdt
dJ

∈≤≤′β−≤δ−  

From (11), we observe that ( ) .00 ≤hJ  We deduce from Lemma 2.1 that 

( ) 0≤tJh  for ( ),,0 h
qTt ∈  which implies that 

( ) ( ( )) ( ).,0,0, h
qi

i TtIitUAfdt
tdU

∈≤≤−≤  (12) 

These estimates may be rewritten in the following form ( ) ,AdtUf
dU

i
i −≤  

.0 Ii ≤≤  Integrating the above inequalities over the interval ( ),, h
qTt  

we get 
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( )

( ) .0,1
0

Iif
d

AtT
tUh

q
i

≤≤
σ
σ≤− ∫  (13) 

Using the fact that ( )00inf ih U=ϕ  for a certain { }Ii ,,00 …∈  and 

taking 0=t  in (13), we obtain the desired result.   

Remark 3.1. The inequalities (13) imply that 

( )

( ) ( ),,0for1
0

0
0

inf0
h
q

h
q Ttf

d
AtT

thU

∈
σ
σ≤− ∫  

and 

( ) ( ( )) ( ),,0forinf
h
q

h
qh TttTAHtU ∈−≥  

where ( )sH  is the inverse of the function ( ) ( ) .
0 σ

σ= ∫ f
dsF

s
 

Remark 3.2. Let hU  be the solution of (4)-(5). Then, we have 

( ) ,1
0 σ

σ≥ ∫
ϕ

∞ f
d

BT
h

h
h
q  

and 

( ) ( ( )) ( ).,0forinf
h
q

h
qhh TttTAHBtU ∈−≤ ∞  

To prove these estimates, we proceed as follows. Introduce the function ( )tv  

defined as follows ( ) ( ) inftUtv h=  for [ ).,0 h
qTt ∈  Let [ ).,0, 21

h
qTtt ∈  

Then, there exist { }Iii ,,0, 21 …∈  such that ( ) ( )11 1 tUtv i=  and 

( ) ( ).22 2 tUtv i=  We observe that 

( ) ( ) ( ) ( ) ( )
( )

( ),12
2

121212
2

22 ttodt
tdU

tttUtUtvtv i
ii −+−=−≥−  

( ) ( ) ( ) ( ) ( )
( )

( ),12
1

121212
1

11 ttodt
tdU

tttUtUtvtv i
ii −+−=−≤−  

which implies that ( )tv  is Lipschitz continuous. Further, if ,12 tt >  then 
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( ) ( ) ( )
( ) ( ) ( ( )) ( ).11 22

22

12
12

222
2 otUftUodt

tdU
tt

tvtv
iii

i +β−δ=+≥
−
−  

Obviously, ( ) .02
2

2 ≥δ tUi  Letting ,21 tt →  and using the fact that 

≤β 2i ,∞hB  we obtain ( ) ( )( )tvfBdt
tdv

h ∞−≥  for ( )h
qTt ,0∈  or 

equivalently, ( )( ) dtBtvf
dv

h ∞−≥  for ( ).,0 h
qTt ∈  Integrate the above 

inequality over ( )h
qTt,  to obtain 

( )
( ) .

1
0 σ

σ≥− ∫
∞ f

d
BtT

tv

h
h
q  Since 

( ) ( ) ,inftUtv h=  we arrive at 
( )

( )σ
σ≥− ∫

∞ f
d

BtT
tU

h
h
q

h inf
0

1  and the 

second estimate follows. To obtain the first one, it suffices to replace t by 
0 in the above inequality and use the fact that ( ) .0 infinf hh U=ϕ  

Remark 3.3. If ,0, Iii ≤≤α=ϕ  where α  is a positive constant, 

then one may take .1=A  It may imply that the potential equals to 1. In 
this case, 

( ) ( ) ( ) ( ).,0for1and1 1
1

1
1

inf
1

h
q

h
qh

p
h
q TttTptUpT pp ∈−+=

+
α= ++

+
 

4. Convergence of the Quenching Time 

In this section, under some assumptions, we show that the solution of 
the semidiscrete problem quenches in a finite time and its semidiscrete 
quenching time converges to the real one, when the mesh size goes to 
zero. 

We denote 

( ) ( ( ) ( )) ( ) ( ) .maxand,,,,
00 tUtUtxutxutu iIih

T
Ih ≤≤∞ == …  

In order to obtain the convergence of the semidiscrete quenching time, we 
firstly prove the following theorem about the convergence of the 
semidiscrete scheme: 
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Theorem 4.1. Assume that the problem (1)-(3) has a solution 
([ ] [ ])TCu ,01,01,4 ×∈  such that [ ] ( ) .0min min,0 >=∈ tuTt  Suppose 

that the potential at (4) and the initial data at (5) satisfy 

( ) ( ) ,010 →=−ϕ ∞ hasouhh   (14) 

( ) .01 →=−β ∞ hasobhh   (15) 

Then, for h sufficiently small, the problem (4)-(5) has a unique solution 
([ ] )11 ,,0 +∈ I

h TCU R  such that the following relation holds: 

( ( ) ) .000max 2
0

→+−ϕ=−β ∞∞≤≤
hashub hhhhTt

 

Proof. Let 0>K  and 0>L  be such that 

( ) ( ) ( ) .21and,2,12 LfbKfK
u

h
xxxx ≤ρ′+−≤ρ≤ ∞

∞  (16) 

The problem (4)-(5) has for each h, a unique solution ([ ),,01 h
qh TCU ∈  

).1+IR  Let ( ) { }h
qTTht ,min≤  be the greatest value of 0>t  such that 

( ) ( ) ( )( ).,0for2 htttutU hh ∈<− ∞  (17) 

The relation (14) implies that ( ) 0>ht  for h sufficiently small. By the 
triangle inequality, we obtain 

( ) ( ) ( ) ( ) ( )( ),,0forinfinf htttutUtutU hhhh ∈−−≥ ∞  

which implies that 

( ) ( )( ).,0for22inf htttUh ∈=−≥  (18) 

Since ,1,4Cu ∈  taking the derivative in x on both sides of (1) and due 
to the fact that xtx uu ,  vanish at 0=x  and ,1=x  we observe that xxxu  
also vanishes at 0=x  and .1=x  Applying Taylor's expansion, we 
discover that 

( ) ( ) ( ) ( )( ).,0,0,,~
12,,

2
2 httIitxuhtxutxu ixxxxiixx ∈≤≤−δ=  
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To establish the above equalities for 0=i  and ,Ii =  we have used the 
fact that xu  and xxxu  vanish at 0=x  and .1=x  A direct calculation 

yields 

( ) ( ) ( ( )) ( )txuhtxuftxutxu ixxxxiiii ,~
12,,,

2
2 −β−=δ−  

 ( ( )) ( ( )) .11,, −≤≤−β+ Iitxufxb iii  

Let ( ) ( ) ( )tutUte hhh −=  be the error of discretization. From the 

mean value theorem, we have 

( ) ( ) ( ( ) ( ( )) ( ( )),,,~
12

2
2 txufxbtxuheftedt

tde
iiiixxxxiiii

i −β−+θ′β−=δ−  

( )( ),,0,0 httIi ∈≤≤  

where iθ  is an intermediate value between ( )tUi  and ( )., txu i  Using   

(16) and (18), we arrive at 

( ) ( ) ( ) ,22
∞−β++≤δ− hhii

i bKKhteLtedt
tde  

( )( ).,0,0 httIi ∈≤≤  (19) 

Introduce the vector ( )tzh  defined as follows: 

( ) ( ) ( ( ) ),0 21
∞∞

+ −β++−ϕ= hhhh
tL

i bKKhuetz  

( )( ).,0,0 httIi ∈≤≤   (20) 

A straightforward computation reveals that 

( )( ),,0,0,22 httIibKKhzLzdt
dz

hhii
i ∈≤≤−β++>δ− ∞  

( ) ( ) .0,00 Iiez ii ≤≤>  

It follows from comparison Lemma 2.2 that 

( ) ( ) ( )( ) .0,,0for Iihtttetz ii ≤≤∈>  
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In the same way, we also prove that 

( ) ( ) ( )( ) ,0,,0for Iihtttetz ii ≤≤∈−>  

which implies that 

( ) ( ) ( ) ( ( ) ),0 21
∞∞

+
∞ −β++−ϕ≤− hhhh

tL
hh bKKhuetutU  

( )( ).,0for htt ∈  

Let us show that ( ) { }.,min h
qTTht =  Suppose that ( ) { }.,min h

qTTht <   

From (17), we obtain 

( )( ) ( )( ) ( ) ( ( ) ).02
21

∞∞
+

∞ −β++−ϕ≤−≤ hhhh
TL

hh bKKhuehtuhtU  

Let us notice that both last formulas for ( )ht  are valid for sufficiently 

small h. Since the term on the right hand side of the above inequality 

goes to zero as h goes to zero, we deduce that ,02 ≤  which is impossible. 

Consequently, ( ) { }.,min h
qTTht =  

Now, let us show that ( ) .Tht =  Suppose that ( ) .TTht h
q <=  

Reasoning as above, we prove that we have a contradiction and the proof 
is complete.   

Now, we are in a position to prove the main theorem of this section. 

Theorem 4.2. Suppose that the problem (1)-(3) has a solution u, 

which quenches in a finite time qT  such that ([ ] [ )).,01,01,4
qTCu ×∈  

Assume that the potential at (4) and the initial data at (5) satisfy the 
conditions (14) and (15), respectively. Under the hypothesis of Theorem 
3.1, the problem (4)-(5) has a solution ,hU  which quenches in a finite time 

h
qT  and we have 

.lim
0 q

h
qh

TT =
→
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Proof. Let .20 qT<ε<  There exists ( )1,0∈  such that 

( ) .2
1

0

ε≤
σ
σ∫ f

d
A  (21) 

Since u quenches in a finite time ,qT  there exist ( ) 00 >εh  and a time 

( )qq TTT ,20
ε−∈  such that ( ) 20 min << tu  for [ ) ( ).,, 00 ε≤∈ hhTTt q  

It is not hard to see that ( ) 0min >tu  for [ ] ( ).,,0 00 ε≤∈ hhTt  From 

Theorem 4.1, the problem (4)-(5) has a solution ( )tUh  and we get 

( ) ( ) 2≤− ∞tutU hh  for [ ] ( ),,,0 00 ε≤∈ hhTt  which implies that 

( ) ( ) 200 ≤− ∞TuTU hh  for ( ).0 ε≤ hh  Applying the triangle inequality, 

we find that 

( ) ( ) ( ) ( ) ( ).for22 0inf000inf0 ε≤=+≤+−≤ ∞ hhTuTuTUTU hhhh  

From Theorem 3.1, ( )tUh  quenches at the time .h
qT  We deduce from 

Remark 3.1 and (21) that for ( ),0 ε≤ hh  

( )

( ) ,2
1 inf0

0
00 ε≤ε+

σ
σ≤−+−≤− ∫ f

d
ATTTTTT

TU
q

h
qq

h
q

h
 

which leads us to the desired result.   

5. Full Discretizations of Solution 

In this section, we study the phenomenon of quenching by using a full 
discrete explicit scheme of (1)-(3). Approximate the solution ( )txu ,  of the 

problem (1)-(3) by the solution ( ) ( ( ) ( ) ( ) )Tn
I

nnn
h UUUU ,,, 10 …=  of the 

following explicit scheme: 

( ) ( ) ( ( ) ) ,0,2 IiUfUU n
ii

n
i

n
it ≤≤β−δ=δ  (22) 
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( ) ,0,00 IiU ii ≤≤>ϕ=  (23) 

where ,0≥n  

( )
( ) ( )

.
1

n

n
i

n
in

it t
UU

U
∆
−

=δ
+

 

( ( ) ) ( ) ( ) .0for,02 >≤−′
=′ s

s
sfssf

s
sf  

If ( ) ,0>n
hU  then 

( ( ) )
( )

( ( ) )
( ) ,0,

inf

inf Ii
U

Uf

U

Uf
n

h

n
h

n
i

n
i ≤≤−≥−  and a “straight” 

forward computation reveals that 

( ) ( ) (
( ( ) )

( ) ) ( ) ,212
0

inf

inf
212

1
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n
n

h

n
h

nh
nnnn U

U

Uf
t

h
tU

h
tU ∆β−

∆
−+

∆
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+  

( ) ( ) (
( ( ) )

( ) ) ( )n
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n
h
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i
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i U
U

Uf
t

h
tU

h
tU
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inf
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1 21 ∆β−
∆

−+
∆

≥ ∞+
+  

( ) ,11,12 −≤≤
∆

+ − IiU
h
t n

i
n  

( ) ( ) (
( ( ) )

( ) ) ( ).212

inf

inf
212

1 n
In

h

n
h

nh
nn

I
nn

I U
U

Uf
t

h
tU

h
tU ∆β−

∆
−+

∆
≥ ∞−

+  

In order to permit the discrete solution to reproduce the properties of 
the continuous one when the time t approaches the quenching time ,qT  

we need to adapt the size of the time step, so that we choose 

{ ( ) ( ( ) )
( ) }

inf

inf
2

,2
1min n

h

n
h

n
U

Ufht ττ−=∆  with .10 << τ  We observe that 

( ( ) )
( ) ,021

inf

inf
2 ≥∆β−

∆
− ∞ n

h

n
h

nh
n

U

Uf
t

h
t  which implies that ( ) .01 >+n

hU  
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Thus, since by hypothesis ( ) ,00 >ϕ= hhU  if we take nt∆  as defined 

above, then using a recursion argument, we see that the positivity of the 
discrete solution is guaranteed. Here τ  is a parameter, which will be 

chosen later to allow the discrete solution ( )n
hU  to satisfy certain 

properties useful to get the convergence of the numerical quenching time 
defined below. 

If necessary, we may take { ( ) ( ( ) )
( ) }

inf

inf
2

,1min n
h

n
h

n
U

Uf
K

ht ττ−=∆  

with 2>K  because in this case, the positivity of the discrete solution is 
also guaranteed. The following lemma is a discrete form of the maximum 
principle: 

Lemma 5.1. Let ( )n
ha  and ( )n

hV  be two sequences such that ( )n
ha  is 

bounded and 

( ) ( ) ( ) ( ) ,0,0,02 ≥≤≤≥+δ−δ nIiVaVV n
i

n
i

n
i

n
it  (24) 

( ) .0,00 IiVi ≤≤≥  (25) 

Then ( ) 0≥n
iV  for Iin ≤≤≥ 0,0  if ( ) .

2 2

2

ha
ht n
h

n
∞+

≤∆  

Proof. If ( ) ,0≥n
hV  then a routine computation yields 

( ) ( ) ( ( ) ) ( ),212
0212

1
0

nn
hn

nnnn Vat
h
tV

h
tV ∞

+ ∆−
∆

−+
∆

≥  

( ) ( ) ( ( ) ) ( ) ( ) ,11,21 12212
1 −≤≤

∆
+∆−
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∆
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h
tVat

h
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h
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i
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( ) ( ) ( ( ) ) ( ).212
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1 n
I

n
hn

nn
I
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I Vat

h
tV

h
tV ∞−

+ ∆−
∆

−+
∆

≥  
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Since ( ) ,
2 2

2

ha
ht n
h

n
∞+

≤∆  we see that ( )
∞∆−

∆
− n

hn
n at

h
t
221  is 

nonnegative. From (25), we deduce by induction that ( ) ,0≥n
hV  which 

ends the proof.   

A direct consequence of the above result is the following comparison 
lemma. Its proof is straightforward. 

Lemma 5.2. Let ( ) ( ),, n
h

n
h WV  and ( )n

ha  be three sequences such that 

( )n
ha  is bounded and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),22 n
i

n
i

n
i

n
it

n
i

n
i

n
i

n
it WaWWVaVV +δ−δ≤+δ−δ  

,0,0 ≥≤≤ nIi  

( ) ( ) .0,00 IiWV ii ≤≤≤  

Then ( ) ( )n
i

n
i WV ≤  for Iin ≤≤≥ 0,0  if ( ) .

2 2

2

ha
ht n
h

n
∞+

≤∆  

Now, let us give a property of the operator tδ  stated in the following 
lemma. Its proof is quite similar to that of Lemma 3.1, so we omit it here. 

Lemma 5.3. Let ( ) R∈nU  be such that ( ) 0>nU  for .0≥n  Then, we 
have 

( ( ) ) ( ( ) ) ( ) .0, ≥δ′≥δ nUUfUf n
t

nn
t  

Lemma 5.4. Let ba,  be two positive numbers such that ,1<b  then 

following estimate holds: 

( ) ( ) ( ) ( ) .ln
1

00
σ
σ−≤ ∫∑

∞

=
f
d

baf
a

abf
ab a

n

n

n
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Proof. We have 
( ) ( )

.
1

00 x

xn
nnx

x

abf
dxab

abf
ab ∫∑∫

+∞
=

∞
=  We observe that 

1+≥ nx abab  for ,1+≤≤ nxn  which that 
( ) ( )

.1

11
+

++
≥∫ n

n

x

xn
n abf

ab
abf

dxab  

Consequently, we get 
( ) ( ) ( ) +−=≥ ∫∑∫

+∞
=

+

af
a

abf
dxab

abf
dxab

x

xn
nnx

xn
n

1
0

1
 

( )
.0 n

n

n abf
ab∑∞

=
 Use the fact that 

( ) ( ) ( )σ
σ−= ∫∫

∞

f
d

babf
ab a

x

x

00 ln
1  to complete 

the rest of the proof.   

The theorem below is the discrete version of Theorem 4.1: 

Theorem 5.1. Suppose that the problem (1)-(3) has a solution        

∈u ([ ] [ ])TC ,01,02,4 ×  such that [ ] ( ) .0min min,0 >ρ=∈ tuTt  Assume 

that the initial data at (23) satisfies the condition (14). Then, the problem    

(22)-(23) has a solution ( )n
hU  for h sufficiently small, Jn ≤≤0  and the 

following relation holds: 

( ) ( ) ( ( ) ) ,00max 2
0

→+β−+−ϕ=− ∞∞∞≤≤
hashbuOtuU hhhhnh

n
hJn

 

where J is any quantity satisfying the inequality Ttn
J
n ≤∆∑ −
=

1
0  and 

.1
0 j

n
jn tt ∆= ∑ −
=

 

Proof. For each h, the problem (22)-(23) has a solution ( ).n
hU  Let 

JN ≤  be the greatest value of n such that 

( ) ( ) .for2 NntuU nh
n

h <ρ<− ∞  (26) 

We know that 1≥N  because of (14). Applying the triangle inequality, 
we have 
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( ) ( ) ( ) ( ) .for2infinf NntuUtuU nh
n

hnh
n

h <ρ≥−−≥ ∞  (27) 

As in the proof of Theorem 4.1, using Taylor’s expansion, we find that for 
,0, IiNn ≤≤<  

( ) ( ) ( ( )) ( ( )) ( ( ))niiiniininit txufxbtxuftxutxu ,,,, 2 β−+β+δ−δ  

( ) ( ).~,2,~
12

2
nitt

n
nixxxx txuttxuh ∆

+−=  

Let ( ) ( ) ( )nh
n

h
n

h tuUe −=  be the error of discretization. From the 

mean value theorem, we get for ,0, IiNn ≤≤<  

( ) ( ) ( ( ) ) ( ) ( ) ( )nitt
n

nixxxx
n

i
n

ii
n

i
n

it txuttxuhefee ~,2,~
12

2
2 ∆

−+ξ′β−=δ−δ  

( ( )) ( ( )),, niii txufxb β−+  

where ( )n
iξ  is an intermediate value between ( )ni txu ,  and ( ).n

iU  Since 

( ) ( )txutxu ttxxxx ,,,  are bounded, ( ) ρ≥txu ,  and ( ),2hOtn =∆  then 

there exists a positive constant M such that 

( ) ( ) ( ( ) ) ( ) ,22 MhbMefee hh
n

i
n

ii
n

i
n

it +β−+ξ′β−≤δ−δ ∞  

.,0 NnIi <≤≤   (28) 

Set ( ) ( )21 ρ′+−= ∞ fbL h  and introduce the vector ( )n
hV  defined as 

follows: 

( ) ( ) ( ( ) ) .,0,0 21 NnIibMMhueV hhhh
tLn

i
n <≤≤β−++−ϕ= ∞∞

+  

A straightforward computation gives 

( ) ( ) ( ( ) ) ( ) ,22
∞β−++ξ′β−>δ−δ hh

n
i

n
ii

n
i

n
it bMMhVfVV  

,,0 NnIi <≤≤   (29) 
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( ) ( ) .0,00 IieV ii ≤≤>  (30) 

We observe from (27) that ( ( ) )n
ii f ξ′β−  is bounded from above by L. It 

follows from comparison Lemma 5.2 that ( ) ( ).n
h

n
h eV ≥  By the same way, 

we also prove that ( ) ( ),n
h

n
h eV −≥  which implies that 

( ) ( ) ( ) ( ( ) ) .,0 21 NnbMMhuetuU hhhh
tL

nh
n

h
n <β−++−ϕ≤− ∞∞

+
∞  

(31) 

Let us show that .JN =  Suppose that .JN <  If we replace n by N 
in (31) and use (26), we find that 

( ) ( ) ( ) ( ( ) ).02
21

∞∞
+

∞ β−++−ϕ≤−≤ρ
hhhh

TL
Nh

N
h bMMhuetuU  

Since the term on the right hand side of the second inequality goes to 

zero as h goes to zero, we deduce that ,02 ≤ρ  which is a contradiction and 

the proof is complete.   

To handle the phenomenon of quenching for discrete equations, we 
need the following definition: 

Definition 5.1. We say that the solution ( )n
hU  of (22)-(23) quenches 

in a finite time, if ( ) 0inf >n
hU  for ,0≥n  but 

( ) .limand0lim
1

0
inf ∞<∆== ∑

−

=
∞→

∆
+∞→ i

n

i
n

t
h

n
hn

tTU  

The number t
hT ∆  is called the numerical quenching time of ( ).n

hU  

The following theorem reveals that the discrete solution ( )n
hU  of    

(22)-(23) quenches in a finite time under some hypotheses. 
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Theorem 5.2. Let ( )n
hU  be the solution of (22)-(23). Suppose that there 

exists a constant ( ]1,0∈A  such that the initial data at (23) satisfies 

( ) ( ) .0,2 IiAff iiii ≤≤ϕ−≤ϕβ−ϕδ   (32) 

Then ( )n
hU  is nonincreasing and quenches in a finite time ,t

hT ∆  which 

satisfies the following estimate: 

( ) ( ) ( ) ,1ln
inf

0inf

inf
σ
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ϕ
ϕ

≤ ∫
ϕ

∆
f
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fT
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h τ

ττ
 

where {
( ) ( )

}.,2
1
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2

τ
τ

τ
h

hfh
A

ϕ
ϕ−

=′  

Proof. Introduce the vector ( )n
hJ  defined as follows: 

( ) ( ) ( ( ) ) .0,0, ≥≤≤+δ= nIiUAfUJ n
i

n
it

n
i  

A straightforward computation yields for ,0,0 ≥≤≤ nIi  

( ) ( ) ( ) ( )( ) ( ( ) ) ( ( ) ).222 n
i

n
it

n
i

n
itt

n
i

n
it UfAUfAUUJJ δ−δ+δ−δδ=δ−δ  

Using (22), we arrive at 

( ) ( ) ( ) ( ( ) ) ( ( ) ) .0,0,22 ≥≤≤δ−δ−β−=δ−δ nIiUfAUfAJJ n
i

n
iti

n
i

n
it  

It follows from Lemmas 5.3 and 3.1 that for ,0,0 ≥≤≤ nIi  

( ) ( ) ( ) ( ( ) ) ( ) ( ( ) ) ( ).22 n
i

n
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n
it

n
ii

n
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n
it UUfAUUfAJJ δ′−δ′−β−≤δ−δ  

We deduce from (22) that 

( ) ( ) ( ( ) ) ( ) .0,0,2 ≥≤≤′β−≤δ−δ nIiJUfJJ n
i

n
ii

n
i

n
it  

Obviously, the inequalities (32) ensure that ( ) .00 ≤hJ  Applying Lemma 5.1, 

we get ( ) 0≤n
hJ  for ,0≥n  which implies that 
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( ) ( )(
(( ( ) ))

( ) .0,0,11 ≥≤≤∆−≤+ nIi
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Uf
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i

n
i

n
n

i
n

i  (33) 

These estimates reveal that the sequence ( )n
hU  is nonincreasing. By 

induction, we obtain ( ) ( ) .0
hh

n
h UU ϕ=≤  Thus, the following holds: 

( ( ) )
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Let 0i  be such that ( ) ( ).
0inf
n

i
n

h UU =  Replacing i by 0i  in (33), we obtain 

( ) ( ) ( ) ,0,1infinf
1 ≥′−≤+ nUU n

h
n

h τ  (35) 

and by iteration, we arrive at 

( ) ( ) ( ) ( ) .0,11 infinf
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inf ≥′−ϕ=′−≤ nUU n
h

n
h

n
h ττ  (36) 

Since the term on the right hand side of the above equality goes to zero as 

n approaches infinity, we conclude that ( )
inf

n
hU  tends to zero as n 

approaches infinity. Now, let us estimate the numerical quenching time. 

Due to (36) and the restriction 
( )
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because ( )sf
s  is nondecreasing for .0>s  It follows from Lemma 5.4 that 

( ) ( ) ( ) .1ln
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0inf

inf
0 σ
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ϕ
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ϕ∞+
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h
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Use the fact that the quantity on the right hand side of the above 
inequality converges towards is finite to complete the rest of the proof.   
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Remark 5.1. From (35), we deduce by induction that 

( ) ( ) ( ) ,for1infinf qnUU qnq
h

n
h ≥′−≤ −τ  

and we see that 
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Since {
( ) ( )

},,2
1

min
inf

inf
2

τ
τ

τ
h

hfh
A

ϕ
ϕ−

=′  if we take ,2h=τ  we get 
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} {
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}.1,4min1,2
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min
inf

inf
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=
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Therefore, there exist constants 10 , cc  such that 100 cc ≤′≤≤ ττ  and 

( ) ( ),11ln O=
′−

−
τ

τ  for the choice .2h=τ  

In the sequel, we take .2h=τ  

Now, we are in a position to state the main theorem of this section. 

Theorem 5.3. Suppose that the problem (1)-(3) has a solution u, 

which quenches in a finite time qT  and ([ ] [ )).,01,02,4
qTCu ×∈  Assume 

that the initial data at (23) satisfies the condition (14). Under the 

assumption of Theorem 5.2, the problem (22)-(23) has a solution ( ),n
hU  

which quenches in a finite time t
hT ∆  and the following relation holds: 

.lim
0 q

t
hh

TT =∆
→
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Proof. We know from Remark 5.1 that ( )τ
τ

′−1ln  is bounded. Letting 

,20 qT<ε<  there exists a constant ( )1,0∈R  such that 

( ) ( ) ( ) .21ln 0
ε<

σ
σ
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− ∫ f

d
Rf
R R

τ
ττ  (37) 

Since u quenches at the time ,qT  there exist ( )qq TTT ,21
ε−∈  and 

( ) 00 >εh  such that ( ) 20 min
Rtu <<  for [ ) ( ).,, 01 ε≤∈ hhTTt q  Let q be 

a positive integer such that [ )qn
q
nq TTtt ,1

1
0 ∈∆= ∑ −

=
 for ( ).0 ε≤ hh  It 

follows from Theorem 5.1 that the problem (22)-(23) has a solution ( ),n
hU  

which obeys ( ) ( ) 2
RtuU nh

n
h <− ∞  for ( ),, 0 ε≤≤ hhqn  which implies 

that 

( ) ( ) ( ) ( ) ( ).,22 0infinf ε≤=+<+−≤ ∞ hhRRRtutuUU qhqh
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h
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From Theorem 5.2, ( )n
hU  quenches at the time .t

hT ∆  It follows from 

Remark 5.1 and (37) that 
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( ) ,2
ε<

σ
σ

f
d  because ( ) RU q

h <inf  for ( ).0 ε≤ hh  We deduce that for      

( ),0 ε≤ hh  

,22 ε≤ε+ε≤−+−≤− ∆∆ t
hqqq

t
hq TttTTT  

which leads us to the result.   
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6. Numerical Results 

In this section, we present some numerical approximations to the 
quenching time for the solution of the problem (1)-(3) in the case, where 

1=p  and ( ) ( )
4
cos2

0
xxu πε+=  with .10 ≤ε<  Firstly, we take the 

explicit scheme in (22)-(23). Secondly, we use the following implicit 
scheme: 

( ) ( )
( ) ( ( ) ) ( ) ,0,1112

1
IiUUbUt

UU n
i

pn
ii

n
in

n
i

n
i ≤≤−δ=

∆
− +−−+

+

 

( ) ,0,00 IiU ii ≤≤>ϕ=  

where ( ) 1
inf,0 +=∆≥ pn

hn UKtn  with .10 3−=K  

In both cases, ( ) .0,4
cos2 Iiih

i ≤<
πε+

=ϕ  For the above implicit 

scheme, the existence and positivity of the discrete solution ( )n
hU  is 

guaranteed by using standard methods (see [3]). In the Tables 1-8, in 
rows, we present the numerical quenching times, the numbers of 
iterations, and the CPU times corresponding to meshes of 16, 32, 64, 128. 

We take for the numerical quenching time ,1
0 j

n
jn tt ∆= ∑ −
=

 which is 

computed at the first time when 

.10 16
1

−
+ ≤−=∆ nnn ttt  

Table 1.  Numerical quenching times, numbers of iterations, and CPU 
times (seconds) obtained with the explicit Euler method for 1=ε  

I nt  n CPU time 

16 0.062132 4102 1 

32 0.062253 15883 3 

64 0.062312 61257 60 

128 0.062322 235525 1245 
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Table 2.  Numerical quenching times, numbers of iterations, and CPU 
times (seconds) obtained with the implicit Euler method for 1=ε  

I nt  n CPU time 

16 0.062302 4017 1 

32 0.062317 15499 6 

64 0.062323 59679 138 

128 0.062324 229179 4260 

Table 3.  Numerical quenching times, numbers of iterations, and CPU 
times (seconds) obtained with the explicit Euler method for 101=ε  

I nt  n CPU time 

16 0.121368 2389 4 

32 0.121210 8882 16 

64 0.121170 32769 222 

128 0.121157 119887 3887 

Table 4.  Numerical quenching times, numbers of iterations, and CPU 
times (seconds) obtained with the implicit Euler method for 101=ε  

I nt  n CPU time 

16 0.121316 14047 25 

32 0.121326 14071 45 

64 0.121328 14091 168 

128 0.121329 14098 795 

Table 5. Numerical quenching times, numbers of iterations, and CPU 
times (seconds) obtained with the explicit Euler method for 1001=ε  

I nt  n CPU time 

16 0.124875 2356 3 

32 0.124694 8728 17 

64 0.124649 32091 236 

128 0.124638 112964 3974 
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Table 6.  Numerical quenching times, numbers of iterations, and CPU 
times (seconds) obtained with the implicit Euler method for 1001=ε  

I nt  n CPU time 

16 0.124822 13915 24 

32 0.1248195 13920 44 

64 0.1248193 13923 168 

128 0.1248191 13925 793 

Table 7.  Numerical quenching times, numbers of iterations, and CPU 
times (seconds) obtained with the explicit Euler method for 10001=ε  

I nt  n CPU time 

16 0.125208 2351 3 

32 0.125024 8708 17 

64 0.124979 32006 191 

128 0.124957 112873 3852 

Table 8. Numerical quenching times, numbers of iterations, and CPU 
times (seconds) obtained with the implicit Euler method for 10001=ε  

I nt  n CPU time 

16 0.125155 13914 26 

32 0.12515090 13917 52 

64 0.12515091 13918 154 

128 0.12515093 13919 781 

Table 9. Numerical quenching times, numbers of iterations, and CPU 
times (seconds) obtained with the explicit Euler method for 100001=ε  

I nt  n CPU time 

16 0.125200 3729 3 

32 0.125100 14220 17 

64 0.125000 54072 192 

128 0.124997 100112 3950 
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Table 10. Numerical quenching times, numbers of iterations, and CPU 
times (seconds) obtained with the implicit Euler method for 100001=ε  

I nt  n CPU time 

16 0.125190 13129 13 

32 0.125180 13220 27 

64 0.125090 14072 292 

128 0.125001 16112 5950 

Table 11. Numerical quenching times, numbers of iterations, and CPU 
times (seconds) obtained with the explicit Euler method for 0=ε  

I nt  n CPU time 

16 0.125191 8520 8 

32 0.125187 8523 9 

64 0.125157 8689 44 

128 0.125071 11069 408 

Table 12. Numerical quenching times, numbers of iterations, and CPU 
times (seconds) obtained with the implicit Euler method for 0=ε  

I nt  n CPU time 

16 0.125193 8588 8 

32 0.125188 8598 11 

64 0.125160 8789 54 

128 0.125072 11168 418 

Remark 6.1. When 0=ε  and ,1=p  we know that the quenching 
time of the continuous solution of (1)-(3) is equal 0.125. We have also seen 
in Remark 3.3 that the quenching time of the semidiscrete solution is 
equal 0.125. We observe from Tables 1-10 that when ε decays to zero, 
then the numerical quenching time of the discrete solution goes to 0.125. 

In the following, we also give some plots to illustrate our analysis. 
For the different plots, we have used both implicit and explicit schemes 
in the case where .1,161 =ε=I  
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In Figures 1 and 2, we can appreciate that the discrete solution is 
nonincreasing and reaches the value zero at the last node. 

In Figure 3, we see that the approximation of ( )tumin  is 
nonincreasing and reaches the value zero at the time .062.0t  

In Figure 4, we observe that the approximation of ( )Txu ,  is 
nonincreasing and reaches the value zero at the last node. Here, T is the 
quenching time of the solution u. We have also used both implicit and 
explicit schemes in the case where .1,161 =ε=I  

In Figures 5 and 6, we can appreciate that the discrete solution is 
nonincreasing and reaches the value 0.125. 

 

Figure 1. Evolution of the discrete solution, 1=ε  (explicit scheme). 
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Figure 2. Evolution of the discrete solution, 1=ε  (implicit scheme). 

 

Figure 3. Approximation of the discrete solution, 1=ε  (explicit scheme). 
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Figure 4. Approximation of the discrete solution, 10001=ε  (explicit 
scheme). 

 

Figure 5. Evolution of the discrete solution, 0=ε  (explicit scheme). 
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Figure 6. Evolution of the discrete solution, 0=ε  (implicit scheme). 
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