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Abstract 

In the present work, we consider a mathematical modelling of an SIR epidemic 
model with S the susceptible, “healthy individuals who can catch the disease”,   
I the infected, “those who have the disease and can transmit it”, and R the 
removed “individuals who have had the disease and are now immune to the 
infection”. We focus on a spatiotemporal distribution of healthy and infected 
populations. We study the existence of stationary solutions to the problem type 
SIR through Schauder’s theorem. 
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1. Introduction 

Mathematical models of infectious diseases have an important role in 
epidemiology. They make it possible to predict the evolution of the spread 
of disease within a population, based on various parameters, such as 
internal displacement, the evolution of the disease or spatial constraints 
(see, for example, Capasso and Serio [7]; Hethcote and Tudor [12]; Liu et 
al. [15, 16]; Hethcote et al. [13]; Hethcote and van den Driessche [14]; 
Derrick and van den Driessche [9]; Beretta and Takeuchi [3, 4]; Beretta 
et al. [5]; Ma et al. [17, 18]; Ruan and Wang [20]; Song and Ma [21]; Song 
et al. [22]; D’Onofrio et al. [19]; Xiao and Ruan [23]). These models can 
also highlight the impact of vaccination, prevention, and the means used 
to stop the disease, to test their effectiveness to find an optimal strategy 
to prevent epidemics. Mathematical epidemiology seems to have grown 
exponentially starting in the middle of the 20th century (the first edition 
in 1957 of Baileys book [1] is an important landmark), so that a 
tremendous variety of models have now been formulated, mathematically 
analyzed, and applied to infectious diseases. Reviews of the literature [2, 8] 
show the rapid growth of epidemiology modelling. 

We study the SIR model, which divides the population into three 
epidemiological classes: healthy and potentially infected individuals (S), 
those who are infected and so infectious (I), and those who have acquired 
immunity after recovery or death, (R). This type of model, which, for 
example, models very well the Black Plague in Europe in the fourteenth 
century, is still used for AIDS nowadays. 

The remaining parts of this paper are organized as follows: Section 2 
presents the SIR model. In Section 3, we study the behaviour of the 
epidemic in each location of a territory, by adding a spatial component to 
the previous model. We study the existence of stationary solutions to the 
problem type SIR through the theorem of Schauder in Section 4. The last 
section provides concluding remarks. 
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2. SIR Model 

We study the following SIR model: 
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The model has a susceptible group designated by S, an infected group I, 
and a recovered group R with permanent immunity, cr  is the intrinsic 

growth rate of susceptible, k is the carrying capacity of the susceptible in 
the absence of infective, α  is the maximum values of per capita reduction 
rate of S due to I, a is half saturation constants, and γ  is the natural 

recover rate from infection. 

This model is an appropriate one to use under the following 
assumptions: 

(1) The population is fixed. 

(2) The only way a person can leave the susceptible group is to 
become infected. The only way a person can leave the infected group is to 
recover from the disease. Once a person has recovered, the person 
received immunity. 

(3) Age, sex, social status, and race do not affect the probability of 
being infected. 

3. Spatial Distribution of the SIR Model 

Here, we are interested in the spatial distribution of healthy and 
infected populations, instead of considering them only in their entirety. 
We work in a model where the healthy and infected individuals move. If 
we denote by ( ) ( )( )xtIxtS ,.,resp,  the density of healthy foxes (infected, 

respectively) at the abscissa x and time t, these quantities satisfy 
equations of the type 
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Considering that the population moves on a straight line, that is to 
say we place in dimension 1. 

We study the existence of stationary solutions (population status in 
big time when setting the values of S and I at the edges of a range). 

To move to the stationary problem, just look in infinite time, the 
system does not depend on time then we obtain 
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To show the existence of stationary solution is going to use the theorem of 
Schauder for this system for all [ ],, dcx ∈  
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4. General Framework of Existence of  
Stationary Solutions 

4.1. Theorem of Schauder 

Theorem 4.1. Let E be a normed vector space, and let EK ⊂  be a 
non-empty, compact, and convex set. Then given any continuous mapping 

,: KKh →  there exists Kx ∈  such that ( ) .xxh =  
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4.2. Implementation of the integral form and definition of the 
problem of fixed point 

To show the existence of solutions to our equations, we transform the 
system of differential equations in integral equations to obtain a fixed 
point problem. For all [ ],, dcx ∈  we have 
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We put 
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We start from the system (5), using (6) then integrating twice, we obtain 
for all [ ],, dcx ∈  
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It is therefore to find ( ) ( )ISISN ,, =  solution of problem of fixed point 

such ( ) ( ) ( )( ),,,,, ISGISFISN =  which is equivalent to find ( )IS,  

solution of problem of fixed point such ( ) SISF =,  and ( ) ,, IISG =  

defined by:  
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For all [ ],, dcx ∈  
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4.3. Hypothesis testing 

● Choice of assumptions on ( ) ( )( )xIxSf ,  and ( ) ( )( ):, xIxSg  

Let [ ]21, ssS ∈  and [ ],, 21 iiI ∈  we defined on [ ] [ ]2121 ,, iissU =  the 

functions f and g as follows: 

For all [ ],, dcx ∈  
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So the function f is 1k  Lipschitz on U. 

By same reasoning, the function g is 2k  Lipschitz on U with 
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● Determination of convex K: 

We define K as follows: 

{ ] [ }.,0 ,2 CSSK dcL ≤≥=  
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● Determination of C: 

Let [ ]( ) φ∈ ,,0 dcCB  an affine function with ( ) ( ) β=φα=φ dc ,  and 
A solution of system 
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Thus, by multiplying ( )φ−A  and integrating from c to d, we obtain 
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So 
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● ( )GF ,  continuous: 
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5. Conclusion 

The SIR is a nonlinear dynamical system which displays complicated 
behaviours, which are difficult to understand in intuitive terms. 
Moreover, these complicated behaviours are relevant in order to explain 
the epidemiology of infectious diseases in humans, as studies comparing 
the behaviour of the SIR and its variants of it to surveillance data have 
shown [6, 10]. We prove the existence of the stationary solutions of the 
considered problem by using the Schauder’s theorem. 

The existence of stationary solutions of the considered problem, can 
explain, on one hand that the model is well-posed, and on the other hand 
opens the way for the numerical analysis and numerical simulation.        
El Berrai et al. [11] was designed for resolution of the differential system 
(5) by using the finite difference approach based on explicit Euler 
schema. Thus, the study of the stability of stationary solutions will be the 
subject of future work. 
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