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Abstract

In this paper, we first study the perturbations and expressions for the generalized
inverses ag)q, ag”qz), ag’ql), and ag? q with prescribed idempotents p and gq.

Then, we investigate the general perturbation analysis and error estimate for
some of these generalized inverses when p, g and a also have some small

perturbations.
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1. Introduction

Let R be a unital ring and let R°® denote the set of all idempotent

elements in R. Given p, g € R°*. Recall that an element a € R has the

@

(p, q) -outer generalized inverse b = ap,)q e R if bab =b, ba = p, and

l-ab=q. If b= al(uz’)q also satisfies the equation aba = a, then we say

a has the (p, q)-generalized inverse b, in this case, written b = ag,’[?). If

an outer generalized inverse with prescribed idempotents exists, it is

necessarily unique (cf. [6]). According to this definition, obviously, we see

that the Moore-Penrose inverses in a C™-algebra and (generalized)
Drazin inverses in a Banach algebra can be expressed by some

(p, q) -outer generalized inverses (cf. [1, 5, 6]).

Based on some results of Djordjevi¢c and Wei in [6], Ilic et al. gave

some equivalent conditions for the existence of the (p, q)-outer

generalized inverse in a Banach algebra in [5]. But in our recent paper
[1], we find that Theorem 1.4 of [5] is wrong. In [1], we first present a
counter-example to [5, Theorem 1.4], then based on our counter-example,
we define a new type of generalized inverse with prescribed idempotents

in a Banach algebra as follows:

Definition 1.1 (see [1]). Let a € & and p, g € &°. An element

b € &/ satisfying

bab = b, R.()=R,(p), K,()=R,(q),
will be called the (p, g, [)-outer generalized inverse of a, written as
ag,z”ql) =b.

1(02,’(11) a, we call a'%) is the

3 3 — (2’ Z)
satisfies a = aa D

In addition, if a D.q

(p, ¢, [)-generalized inverse of a, denoted by ag,)q.
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Perturbation analysis of the generalized inverses is very important in
both theory and applications. In recent years, there are many fruitful
results concerning the perturbation analysis for various types
generalized inverses of operators on Hilbert spaces or Banach spaces. The
concept of stable perturbation of an operator on Hilbert spaces and
Banach spaces is introduced by Chen and Xue in [1]. Later, the notation
is generalized to the set of Banach algebras by the second author in [12]
and to the set of Hilbert C*-modules by Xu et al. in [15]. Using the
notation “stable perturbation”, many important results in perturbation
analyses for Moore-Penrose inverses on Hilbert spaces and Drazin

inverses on Banach spaces or in Banach algebras have been obtained.
Please see [2, 3, 4, 12, 13, 14] for detail.

Let X, Y be Banach spaces over complex field C. Let T (resp., S) be

a given closed space in X (resp., Y). Let A be a bounded linear operator

from X to Y such that A(TQ)S exists. The perturbation analysis of A(TQ)S for

small perturbation of 7, S, and A has been done in [7]. Motivated by

some recent results, concerning the perturbation analysis for the
generalized inverses of operators, in this paper, we mainly study the
perturbations and expressions for various types of generalized inverses
with prescribed idempotents in Banach algebras. We first consider the
stable perturbation characterizations for ag)q, ag,’[?), al(u%’ql), and ag,)q
with prescribed idempotents p and q. Then, by using stable perturbation
characterizations, we can investigate the general perturbation analysis

and error estimate for some of these generalized inverses when p, ¢, and

a also have some small perturbations. The results obtained in this paper

extend and improve many recent results in this area.
2. Preliminaries

In this section, we give some notations in this paper, we also list

some preliminary results, which will be frequently used in our main
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sections. Throughout the paper, & is always a complex Banach algebra

with the unit 1.

Let a € &. If there is b € & such that aba = a and bab = b, then

a is called to be generalized invertible and b is called the generalized

inverse of a, denoted by b =a". Let Gi(«/) denote the set of all
generalized invertible elements in &/\{0}. Let &/° denote the set of all

idempotent elements in &7. If a € Gi(«), then a*a and 1 -aa™ are all

idempotent elements. For a € &, set
K.(a)={x e &|ax =0}, R.(a)={ax|x e d};

Kj(a)={x e &|xa =0}, Rj(a)={xa|x e &}.

Clearly, if p € &°, then & has the direct sum decompositions
o = K,(p)+ R,(p) or o =K;(p)+ Ry(p)

The following useful and well-known lemma can be easily proved.

Lemma 2.1. Let x €« & and p € &°. Then

(1) K,(p) and R,(p) are all closed and K,(p)= R,.(1- p),
R,(p) & < R,(p);

(2) px = x if and only if R,(x) c R,(p) or K;(p) c K;(x);

(3) xp = x if and only if K,(p) = K,(x) or Rj(x) = R(p).

We list some of the necessary and sufficient conditions for the

existence of ag,z”ql) in the following lemma, which will be frequently used

(2,0)

p.g’ 1s unique if it exists.

in the paper. Here, we should indicate that a

Please, see [1] for the proofs and more information.

Lemma 2.2. Let ac & and p,qe . Then the following

statements are equivalent:
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(1) ag’ql) exists;

(2) there exists b € & such that bab = b, R.(b) = R,(p), and K,(b)
= R,(9);

®3) K,(a)N R, (p) = {0} and & = aR,(p)+ R,(q);

(4) there exists b e of satisfying b = pb, p = bap, b(1 —q) = b,
1-q =(1-qab;

() p e Ri((1 - q)ap) = {x(1 - g)ap|x € &} and 1 - q € R,((1 - ¢)ap);

(6) there exist some s,te « such that p=t1-q)ap,1-q =
(1 - q)aps.

The following lemma gives some equivalent conditions about the

existence of ag?q. See [1] for more information.
Lemma 2.3. Let aec & and p,qe &°. Then the following
conditions are equivalent:
(1) ag’)q exists, i.e., there exists some b € &/ such that
aba = a, bab=>, R.(b)=R.(p), K,(b)=RI(q),
@ o = Ry(a) + R,(q) = K,(a) + B,(p),
(3) & = aR,(p)+ R,(q), R:(a) N R.(q) = {0}, K,(a)N R,(p) = {0}.

Let X be a complex Banach space. Let M, N be two closed subspaces
in X. Set

sup {dist(x, N)| x € M, |x| = 1}, if M = {0},
8(M, N) =
0 if M = {0},

where dist(x, N) = inf {|x — y||y € N}. The gap (M, N) of M, N is

given by 8(M, N) = max{5(M, N), 8N, M)}. For convenience, we list
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some properties about §(M, N) and 8(M, N), which come from [9] as
follows:

Proposition 2.4 ([9]). Let M, N be closed subspaces in a Banach

space X. Then

(1) 8(M, N) = 0 ifand only if M  N:;

(2) M, N) =0 ifand only if M = N;

(3 8(M, N) = &(N, M);

(4) 0<8(M, N)<1,0<d8M, N)<1.

3. Stable Perturbations for the (p, q)-Generalized Inverses

Let a € Gi(#/) and let @ = a + 8a € &/. Recall from [13] that @ is a

stable perturbation of a if R.(@)N K,(a™)={0}. Obviously, we can

define the stable perturbation for various kind of generalized inverses. In
this section, we concern the stable perturbation problem for various types

of (p, q)-generalized inverses in a Banach algebra.

Lemma 3.1 ([8, Lemma 2.2]). Let a,be /. If 1+ab is left

tnvertible, then so is 1 + ba.

Lemma 3.2. Let a, 8a € & and p,q € &/° such that ag’;) exists.

Put @=a+da If 1+8aa'®) is invertible, w = ag,%’;)(l + Saag,z,’ql) )L

l
D, q
=(2,1) .. _ =(20)
Then ay,’ exists and w = apy’-

Proof. We prove our result by showing that waw = w, R,(w) = R,(p),
K,(w) = R,(q). It is easy to check that

w = aj(uz,’ql)(l + Saagz”ql) )_1 =(1+ aE,Q,’ql)Sa)_l al(vz,’ql).
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Then, by using these two equalities, we can show R,(w) = Rr(ag’ql)) =

R, (p) and K, (w) = K,(ag’ql)) = R,.(q). We can also compute

— 2,1 2,0)\-1= (2,1 2,1)\-1
waw = al(u,q)(l + 8aa£,,q)) aal(u,q)(l + Saaj(w))

ag’é)(l + Saag’ql) )_1[(aa§)%’é) -1)+(1+ Saafv%’;))] 1+ 6aal(v2,’ql) )_1

= aé%’é)(l + Saag’ql) )_1(aa§,%’é) -1)(1+ Saag’ql) )_1 +w

= w.
By Definition 1.1 and the uniqueness of aj(vz”ql), we see 6},‘?;}) exists and

w=az). O

Obviously, from the proof of Lemma 3.2, we see that if ag’;) exists

and 1+ ag’é)éa is invertible, set v = (1 + ag’ql)éa)_l al(u%’ql), then we also

have v = 55)%;11). In order to prove the main results about the stable

perturbation, we need one more characterizations of the existence of

(27 l)
Apq-

For an element a € & and p,q e &°. Let R, : & — & Dbe the
right multiplier on & (i.e., R,(x) = xa for any x € & ). Then, it easy to

see that a'>!) exists in o if and only if (R, )g)(

bq exists in the

1-q),«/(1-p)
Banach algebra B(«7). So from the equivalences of (1), (2), and (3) in
Lemma 2.2, dually, we can get the following equivalent conditions for the

existence of a -

Proposition 3.3. Let a € & and p, q € &°. Then the following

statements are equivalent:
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(1) ag’ql) exists;

(2) there exists ¢ e & such that cac =c, Rj(c)= R(1-q), and
Ki(c) = RB,(1 - p);

() Ki(@) N Ry(1 -q) = {0} and & = R)(1 - q)a + R;(1 - p).

Proof. (1) < (2) Suppose that ag’ql) exists. Let ¢ = ag’ql). Then

from Definition 1.1, we know that cac =c¢, and then ca, ac € &°,
R,.(ca) = R,(c) = R.(p), K,(ac) = K,(c) = R.(g). Thus, it follows from
Lemma 2.1 that

cap = p, peca=ca, ac(l-q)=ac, (1-q)ac=1-q.
Then, by using Lemma 2.1 again, we have
Ki(ca) c K;(p) = Ki(ca), Rjac) = Bi(1-q) < Ry(ac). (3.1)
By using cac = ¢, we have Kj(ca) = K;(¢) and R,.(ac) = R,(c). Thus

from Equation (3.1), we see that (2) holds. If (2) holds, similarly, by using

Definition 1.1 and Lemma 2.1, we can obtain al(uz’,;) exists.

(2) & (3) By our remark above this lemma, we see these hold simply
from the equivalences of (2) and (3) in Lemma 2.2. Note that we can also

prove these equivalences directly by using the right multiplier R, on .

Here we omit the detail. O

Now, we can present one of our main results about the stable

perturbation of the generalized inverse ag”é).

Theorem 3.4. Let a, da € & and p, q € &/° such that aj(uz”ql) exists.

Put a = a + da. Then the following statements are equivalent:

1)1+ Saag’ql) is invertible;
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@1+ ag’ql)f)a is invertible;

3) 6},27;; ) exists.

In this case, we have 6},2,’(11) = ag’ql)(l + Saal(uz,’ql) Y=+ aE,Q,’qZ)Sa)_l

(2,0)
Up,q

Proof. (1) < (2) Follows from the well-known spectral theory in

Banach algebras.

(2) = (3) We prove our result by using Lemma 2.2. Let x € K,(a)

NR,(p) = {0}. Since R,.(p) = Rr(ag’é)), then there exists some ¢t € &

satisfying x = ap%llt and at = 0. Thus, we have

1+ ag’ql)?ia)ag’ql)t = ag’ql)t + ag’ql)é‘)aag,z,’ql)t

2,1 2,1
= aﬁ,”q)(a + Sa)aﬁ,”q)t
=aat = 0.

Since 1 + ag’ql)éa is invertible, it follows that x = ag’ql)t = 0. Therefore,

K,(@)N R, (p) = {0}. (3.2)
Let s € aR,(p)N R,.(q). Since R,.(p)= Rr(ag’ql)) and R,(q) = K,(ag,z”é)),
then there exists some z € & such that s = aa®)z and al(ug,’ql)s =0.
Similar to the proof of Equation (3.2), we can get s = ag’ql)t =0, ie.,
aR,(p)N R,(q) = {0}. Since 1+ al(u%’ql)Sa is invertible, then for any
w € &, there is some v € & such that afv%’é)w =1+ ag,g,’ql)éia)v. From

a = a + 8a, we have

(1- al(uz,’ql)a)v = agz,’ql)(w -av) e Rr(ag’ql)a) N K,(ag’ql)a) = {0}.
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Thus, w — av € K,(ag’ql)) and v = aﬁ,%’é)av € R,(ag’ql)). Since for w € &,

we also have w = av + (w — av) € aR,(p) + R,(¢). Thus, we have

o = aR,(p)+ R.(q). (3.3)
Now, from Equations (3.2) and (3.3), by using Lemma 2.2, we see that
c_tg’ql) exists.

(3) = (1) Suppose that a_g,z,’ql) exists, we want to prove 1 + Saaft,%’é) is
both left and right invertible. Since Eg%bl) exists, then from Lemma 2.2,
& =aR,(p)+ R,(q) = ER,(ag’ql)) + Kr(ag’(;)). Thus, for any x € &/, we
can write x = Eag,%’é)tl +ty9, where t; e & and iy € K,(ag,z,’ql)). Set

s = aal(nz,’ql)tl +t9, then

1+ saa'®)) )s

2,1 2,1
bq (1+ Saafvy’q))(aag,’q)tl +1g)

Eag’ql)tl + t2 = X.

Since x € & is arbitrary, let x = 1, then we see that 1 + Saag’ql) is right

invertible. Now we prove that 1+ Saag’é) is also left invertible. In fact,
from Proposition 8.3, we also have & = R/(1-q)a+ R/(1-p)=
Rl(a)(r,g”ql))(i{L Kl(ag’ql)) for 6},27’(;) exists. Then for any z € &/, we can
write z = slag,z”ql)a + 89, where s; € Rl(al(,,z”;)a) and sy € Kl(ag,z”ql)). Let

t = 8] + S9, then we have

t(1+ agz,’ql)éa) (s1 +s9)(1+ al(uz,’ql)éa)

8] + 89 + slag’ql)(a -a)

slag’ql)a +89 +8(1- al(ug,’ql)a)

=Zz.
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Since z € & 1is arbitrary, let z = 1, then we get that 1+ agz,’ql)Sa is left

invertible. But from Lemma 3.1, we see 1 + Saag’ql) is also left invertible.

Thus, 1+ Saag’ql) 1s invertible.

Now, from Lemma 3.2, Eg%bl) = al(u%’ql)(l + Saag’ql) yl=01+ ag,z”ql)Sa)_l

agz,’ql). This completes the proof. O

Lemma 3.5. Let a, da € & and p, q € &° such that ag’ql) exists. If

1+a%8a is invertible. Put @=a+8a and f=(1+a%lsa)?

(1- ag’ql)a). Then

(1) f e &° with K,(@) < R.(f);
(2) K,(a) = R,(f) if and only if R.(a)N R,(q) = {0}.

Proof. (1) Since (1 - agz,’ql)a)(l + agz,’ql)Sa) =1- aE,Q,’ql)a and 1 + ag,z,’ql)éia

2 Dsq )L, Thus,

is invertible, we have 1 — ag’(j)a =(1- ag’ql)a)(l +ayy

2=+ ag’ql)éia)fl(l - ag’ql)a)(l + ag’ql)é}a)fl(l - ag’ql)a) = f.

Now for any x € &/, from (1 - aal(u%’ql) o= (1+ ag,%’qf)éia)x - ag,%ql)ax,

we have
fx=(1+ ag’ql)éa yla - al(u%’ql)a)x =x-(1+ ag’é)éia )_lag’ql)ax. (3.4)
Equation (3.4) implies that K,(a) < R,(f).

2) (=) Let t € R.(@) N R.(q) = {0}. Since R.(q) = K,(aZ)), then

there is some x € & such that ¢ = ax and afu%g)ax = ag’(ll)t = 0. Thus,

x = fx by Equation (3.4). So, x € R,(f) = K,(a) and ¢ =ax =0, ie.,
R.(@)N R,(q) = {0}.
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(<) Thanks to (1), we need only to prove R,.(f) < K,(a). Let
t € R.(f). Since f € &°, we have t = ft. So by Equation (3.4), we get
(1+ ag,z”ql)Sa)_lag’é)Et =0 and then ag’(;)at = 0. Hence at € R.(a)N
R,(q) = {0} and K, (a) = R,(f). O
Similar to [12, Proposition 2.2] or [13, Theorem 2.4.7], but by using

some of our characterizations for a2

b4 and ag,)q, we can obtain the

following results about the stable perturbations for these two kinds of
generalized inverses.
Theorem 3.6. Let a, 8a € & and p, g € &° such that ag’ql) exists.

Suppose that 1+a£,2,’ql)6a is invertible. Put a =a+d8a and w =

(1+ ag’ql)éa)_l ag’ql). Then the following statements are equivalent:

D) w=al, ie, az) =al,;

(2) R.(@)N R,(q) = {0}, i.e., @ is a stable perturbation of a;
3) a(1+ ag’é)ﬁa )_1(1 - ag’ql)a) =0;
4 (1- aag’ql))(l + Saal(uz,’ql) )_15 =0.

Proof. The implication (1) < (2) comes from Lemmas 2.2, 2.3, and

Theorem 3.4. The implication (2) < (3) comes from Lemma 3.5.

(3) < (4) We can compute in the following way:
a(l+ ag’ql)&t ya- ag’é)a) =a(l+ ag,z”ql)éia)_l[(l + ag’ql)Sa) - ag,%ql)a]
= a-aa?)1 +saaZV)'a

b,

=a-[(1+ Saag’;) )—-(1- aag,’ql))]
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x (1 + Saag’é) yla

=(1- aag,z,’ql))(l + Saagz”ql) yla.
This completes the proof. a

Furthermore, by using the above theorem, we have the following

results:
Corollary 3.7. Let a, da € &/ and p, q € &° such that al(uz’,;) exists.

Puta =a+da. If 1+ ag’ql)é}a is invertible. Then the following statements
are equivalent:

(1) R,(a)N R,(q) = {0}, i.e., @ is stable perturbation of a;
@ (1 +aZVsa) K, (a2Va) = K,(@);
3) (1+8aal?)) ' R.(@) = R.(aa'Z)).

Proof. Note that we have Kr(ag,z”ql)a) =R, (1- al(u%’ql)a) and
Rr(aag’é)) = K,(1 —aag’;)). So, we can get the assertions by using

Theorem 3.6. O

Theorem 3.8. Let a, da € & and p, g € &° such that ag,)q exists.

Put a = a + da. Then the following statements are equivalent:

(1) 1+ag,)q6a is invertible, R.(a)= K,(q) and Eé{)q :ag,)q

1+ Saag’)q )L
(2) Rr(a) N Rr(q) = {0}’ Kr(a_) N Rr(p) = {0}’ and (Z_Rr(p) = Kr(‘])-
Proof. (1) = (2) Suppose that (1) holds. Since al!), exists, we obtain

that aﬁ,%’é) exists and ag’é) = ag,)q. Thus, from our assumption, by using

Theorem 3.6 and Lemma 2.3, we have
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R.(@)NR.(g) = {0}, K,(a)N R,.(p)=1{0}.
Now we need to show aR,(p) = K,(q). But since R,(a)= K,(q), so
we can prove our result by showing that aR,(p) = R,(a). Obviously,

aR,(p) c R.(a). On the other hand, since al)

p g exists, then by Lemma

2.3 again, we have & = aR,(p)+ R,(¢). Now for any x € R,(a), we can
write x = x; + x9 with x; € aR.(p) and x9 € R.(q). From aR,.(p) c

R.(a@), we get x; € R.(@). Thus,
X9 =X —-X1 € Rr(a)m Rr(q) = {0}

Therefore, x9 = 0 and then x = x; € aR,(p). Hence, aR,(p) = R,(a) =
K. (9).

(2) = (1) Since qe &° and aR,(p)= K,(qg), we can write
o = Kr(‘]) + Rr(Q) = a_Rr(p) + Rr(Q)' Note that Rr(a) N Rr(Q) = {O}’
K,.(@)N R.(p) = {0}, then by using Lemma 2.3, we get ag?q exists, then

(2,0) i @0 _ 0
ap’y also exists and ap’y =aplq- Thus, from Theorem 3.4, we see

1+ ag,)qéa is invertible and a_g,)q = ag,)q 1+ Saag?q )'. Now, by using
Lemma 2.3, we can get & = aR,(p)+ R.(q). Similarly, as in (1) = (2),
by using R,(a)N R,.(q) = {0}, we can show that aR,(p) = R.(@) and

then R,.(a) = K,(q). This completes the proof. O

The first result in the following lemma has been proved for

generalized inverse a’ by the second author (see [12, Proposition 2.5]).

By using the same method, we can prove the following results for the

general inverse ag?q .

Lemma 3.9 ([12, Proposition 2.5]). Let a, 8a € & and p, q € °

such that ag?q exists. Put a = a + 8a.
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(1) If 8(R, (@), R,(a)) < [1 - aal)y |, then R.(@)N R.(q) = {0};
@ If 8(K, (@), K,(@)) < |aplyal™, then K,(@) N Ey(p) = {0}
By using Theorems 3.6, 3.8, and Lemma 3.9, we have the following:

Corollary 3.10. Let a, a € & and p, q € &° such that ag’)q exists.

Put a = a + da. If one of the following condition holds:

() 3(K, (@), K, (a)) <[af)gal™. 8(R, @), R,(@)) < |1 - aal)y |, and
aR,(p) = K,(q).

1) 1+ ag)an is invertible and 3(R, (@), R,(a)) < |1 - aa) l) ||
Then Eg,)q exists and c_zg’)q = al(vl,)q (1+ Saag’)q )t

Finally, we present some perturbation results for ag’)q.

Theorem 38.11. Let a, 8a € & and p, q € &° such that a1(02,)q exists.

Put a =a+6a. If 1+ al(uzy)qéia is invertible. Then the following statements
are equivalent:

(1) a(z) exists and 6},2,2] = agz’)q(l + Saal(uz,)q L

2) ap = (1 - q)a;

3) Ea =(1- q)aa and %a = ag,%)qap.

Proof. (1) & (2) Comes from [6, Theorem 4.1]. We show that (2) and

(3) are equivalent. If ap = (1 - q)a, then

6“1(0,)61 = Epag,)q =Q1- q)aa and a2 )qa = a(z) 1-q)a = a(Z) ap.
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Conversely, if (3) holds, then ap = Eafv2 a aag,z’)qﬁp =

O

1-gq)a.

Corollary 3.12. Let a, a € & and p, q € &° such that 1(0) exists.

Put a =a+6a. If 1+ ag)qéia is invertible and 8a = (1 -q)da = 3Sap.

Then (7})2,21 exists and
(75)2’21 = ag)q (1+ Saal(uz’)q )_1 =1+ ag)an )—1%(02:)(1_

Proof. If 8a = (1 - q)8a = dap, then it is easy to check that ap =

(1 - g)a. Thus, Theorem 3.11 shows that our results hold. O

4. Perturbation Analysis for the (p, ¢)-Generalized Inverses

In this section, we mainly investigate the general perturbations

problem for the (p, q)- generalized inverses ag,g,’ql) and ag:g). Let k =
o] ||a§,2,’ql)||, which is the generalized condition number of the generalized

mverse ap’q .

Lemma 4.1. Let ae & and pe &° with R.(p)= R.(a). Let

¢ e o with R,(c) closed and 5(R,(c), R.(a)) < ——. Then o = R,(c)

'i'Kr(p)-
Proof. Let Lyx = px, Vx € &. Then L, is an idempotent operator
on & with |L,| = |p| and {L,x|x € &} = R,(p). By [10, Theorem 11]

or [13, Lemma 4.4.4], 3(R,(c), R.(a)) < implies that & = R,(c)

1
T+[L0

+ K, (p). O
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Lemma 4.2 ([12, Lemma 2.4]). For any p,q € &°, we have
3(R,(p), Ry(@)) <P -al-

Lemma 4.3. Let a € & and p,q € &° such that ag’(;) exists.

Suppose that p' e &° satisfying |p — p| < Then

1
1+k°

2 : Klp-pl .
(1) a(aRr(p)’ aRr(p )) S 1 _ (1 + H)"p _ p!" >

(2) aR,.(p') c & isclosed and K,(a)N R.(p') = {0}.
Proof. (1) Set b = ag’ql). For any t' € R.(p'), we have
. ) _ P < . e
disat’, aB (p) = gt ot~ at] <l _ipt It ]
< ||a||dist(t’, R,(p))

< lla] [¢15(R, ("), R, (p)).

Thus, we get

S(at', aR,(p)) < |a] l13(R, ("), R, (p)). (4.1)

But for any t' € R,(p') and t € R.(p), we have
ol laz'| = ol @ = ¢ + &)]| = [oillat] - [] lal ¢ - ]
> [ - [l lal " 2]
> [l = @+ ol el )" - 2.
Thus, [¢'] -6l < (@ + o] [a])]¢ - 7], and then
] = el lat'l < @+ [ollal)dist(', R(p))
< @+ ISR, (), Ry (o).

Therefore, we have
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|6l o] '
1= 1+ ol |al)o(E,(p), B, (p))

Then by Equations (4.1) and (4.2), we get

It < (4.2)

llellet13(R, (), B,(p)
1=+ plle3(R, (), B, ()

3(at', aR,(p)) <

Now, by Lemma 4.2 and the definition of gap-function, we have

, ke - o
3(aR,(p'), ak,(p)) < 7 G+olp- 7l (4.3)

On the other hand, for any ¢ € R,(p), by Lemma 2.2, we have
t = pt = bapt = bat, then

dist(at, aR,(p')) = SE&@I:f(’ﬂ)"dt —as| < ||| sel}g{p,)"t -4

= [a]dist(z, R, (p") < |al || 3(R,(p), R,(p"))
= |a| [bat] 3(R,(p), R,(p"))
< [lal 6] || 5(R, (p), R, (p"))-
Thus, we have 8(aR,(p), aR,(p")) < kd(R,(p), R,(p’)). So by Lemma 4.2,
8(aR,(p), aR,(p") < &|p - p/. (4.4)
Consequently, from Equations (4.3) and (4.4), we have
3(aR,(p), aR,(p") = max {3(aR,(p), aR,(p)), 8(aR,(p), aR.(p"))}

< Hp-pI
1-1+r)|p- P

(2) Obviously, by Equation (4.2), we get aR,(p') = & 1is closed and
K,(a)N R,(p') = {0}. This completes the proof. O

Now, we can give the following perturbation result for a2

p.g’ When p

has a small perturbation.
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Theorem 4.4. Let a € & and p, q € &° such that ag’ql) exists.

Suppose that p' € &* with ||p - p/| <

Then af,’é) exists and

+ H)2 '
2,0 _ (2] ’ y
"ap',q Ap.q ” < (1 + H)"p - p" and ||a(%,l) " < ||a1(0,q)” |
I N A A S EDI

Proof. Let b = ag,z,’(p, then by Definition 1.1, we know that ab € &7°

and r = |b]|la| = [ab|. By using Lemma 4.3 and note that |p - p/| <

we have

1 +r)? ’

2 : klp - P 1
d(aR , aR < — < .
( r(p) r(p )) 1_(1+|Q)"p_p” 1+||ab||

From Lemma 4.3 (2), we know that K,(a)N R.(p') = {0} and aR,(p') c &
is closed. Thus, by Lemma 4.1, aR,(p') is complemented and

& = aR,.(p') + R.(¢q). Therefore, by Lemma 2.2, we know ag)q exists.

For convenience, we write ag)‘,’é) = b'. Since we have proved that

af,’(ll) exists, then by Theorem 2.2, & = aR,(p')+ R.(q) = aR,(p')+ K, (")

and K,(0') = R.(q) = K,.(b). Thus for any x e &, we can write

x =t+t with t = ab'z for some z € & and ¢' € R,(q).

Since dist(b'z, R.(p)) < |p'2|3(R,(p'), R.(p)) < |b'z||p' — p|, then for
every ¢ > 0, we can choose y € & such that b’z - by| < |b'z|||p’ - p| + <
Put s = aby. Then, we have

[t = s = llad’z — aby| <[] [o'=] [P’ - p[ + ]«
&7 = b)ef| = [[(&" = b) & + £)]| = [|(b" = b)e

< |p'ab’t — babs| + ||bs — bi|
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< o'z = by + [lo s -
<@ +r)|p'2|p" - P+ @+ K)e
From ¢t = ab'z, we get b't = b’z and therefore,
6°2]) = ot = (6" = &) + bxf| < (& = b)el| + o] |-
Thus by using Equations (4.5) and (4.6), we get

b = B)e] < (1 + ) (Bl ] + & = B = ol + (1 + )

Letting ¢ » 0" in Equation (4.7), we can get

(4.5)

(4.6)

4.7

2.0) _ (21 / .
"ap',q - agl,q)" < (1 + }Q) "p - p” ”a(Q’Z)" - ||a1(v,q)||
e I ] i A D] P

This completes the proof.

O

Some representations for the generalized inverse al(uz,’ql) have been

presented in [1]. The following result gives a representation of a&,z,’ql)

based on (1, 5) inverse. Note that this result is also an improvement of

the group inverses representation of ag,%’ql) (see [1]), which removes the

existence of the group inverses of wa or aw.

Lemma 4.5 ([1, Theorem 5.6]). Let a, w € & and p, q € &° such

that R.(w) = R,(p) and K,(w)= R,(q). Then the following statements

are equivalent:
(1) ag,z”ql) exists;
2) (aw)(1’5) exists and K,(a)( R.(w) = {0};

3) (wa)(1’5) exists and R,(w) = R, (wa).

In this case, waw is inner regular and
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ag’ql) = (wa)(1’5)w = w(aw)(1’5) = w(waw) w

Now, we give the result when g has a small perturbation. By using
our above Lemma 4.5, we can also give a new representation for the

generalized inverse of the perturbed operator.
Theorem 4.6. Let a € & and p, q € &° such that ag’ql) exists.

Suppose that q' € &° with |g — ¢/ <

P Then a o.q exists and

I(afry? — ol _ @+l - 1+
) L @+8)]g-q] nd||a2l)||< la" - qII||| @),

e " 1-xle-d] —xlg" - ql

(2) If there are some w,v € & with R,.(w)= R,(p), K,(w) = K,(v)
= R.(q) and R,.(v) = R,(q'). Then

;2 ql) = aE)Z ql) + ag’ql)(av)(155)a(v - w) (1 — aag’ql))'

Proof. Since 1 + |1 — ab|| < 2 + k, then by Lemma 4.2, we have

. , a1 1
S(Rr(Q)> Rr(q )) < "q q" < 2+ k < 1 _|_||1 _ab” '

So & =aR,.(p)+ R,(q¢') by Lemma 4.1. Note that K,(a)N R,(p) = {0}.

So ag’j) exists.

(1) From al(f Z) = pa( ) = al(oqu)aafql), we get

(2,0 2,0) _ (2,1 2.0 2,1
ayy - aj(qu) = aj(o,q)(aap’q, - aaj(u,q)).
Since (1 - aaf’ql) )x € R.(¢') for any x € &, so we have

dist((1 - aa'>!) ), R, (@) < 8(R,(¢). Br(@))|(1 - aa®)x]

_alll(1 = aa®?
< llg = gl - aa; ;).
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Since Kr(ag,z”ql)) = R.(q), then for any ¢ > 0, thereis z € & such that
(0~ aai ke — (1~ aafy) 2] < la — @11 - aaliy) ] + .
and then we have
1) - alZ )] = [a P (aal®]) - adlz D x|
< Jalz D41 - ad? D - (1 - aaZ ) )2
<(lg - g0 - aa@De] + JJa@)). @8
Since, we also have
11 - aa® D] < |l + ol |alDx - (@22 - alD)x]
< @+ )|l + [l (@) - a2 D). (4.9)

Now from Equations (4.8) and (4.9), we can compute

||(a(2 ) _ g2.0) Y| < (lg = gl @ + w) x| + E)||a,(o2,’ql) I |
o 1= xlg - 4]

Let ¢ - 0" in the above inequality, we obtain that

oy — abedl

(1 +x)]g" - q| 1)) < 1 1+la'-dl e
ot < a2 JaZP.
sl Klg" - gl 1-+lg"~df

(2) By Lemma 4.5, ag’;) = (va)(1’5)v = v(av)(1’5). For convenience, we write
b= ag’ql), b = af’ql,), and x = al(o%’ql) + ag’ql)(av)(lﬁ)a(v -w)(1- aag’ql)).

Now we prove that x = &' by using Lemma 2.2 (4). Obviously, we have

2]

px = x. Note that p = a( q QP SO

xap = {al(uz,’ql) + ag,z”ql)(av)(lj)a(v -w)(1- aag”ql) )jap



PERTURBATION ANALYSIS FOR THE GENERALIZED ... 41

= al(uz,’ql)ap + a(2’€5)(av)(l’5)a(v - w)(ap - ap)

D,
= p.
Since b = w(aw)(l’S) we have
xq' = {ag’ql) + al(,,z”ql)(av)(lj)a(v -—w)(1- aag’(ll))}q’
=bq'+ {b(av)(1’5)av - b(av)(1’5)avab - b(av)(l’5)aw + b(av)(l’5)awab}q'
=bq' + bab'q’ — bab'abq’ - b(av)(l’ 5)Otwq' + b(av)(l’5)awabq'
= bq' +0-bq' - bav)"Pawqg’ + b(av) awaw(aw)? g’

= 0.

Thus, we have x(1 — ¢') = x. Finally, since aw = awaw(aw)(1’5) = awab,

we have

(1-q)ax =(1- q')a{ag,z,’ql) + ag,%’(f)(av)(l’5)a(v -w)(1- aag,%’é))}
=(1- q')ab'a{ag,’ql) + ag’ql)(av)(lﬁ)a(v -—w)(1 - aag’ql) )}
=(1-q'){abab + ab'ab(av)(1’5)(av - w)(1 - ab)}

=(1-q¢')(ab+ab —ab- ab’ab(av)(1’5)aw + ab’ab(av)(1’5)awab)

=(1-q")ab

=1-¢q"
Therefore, by Lemma 2.2 and the uniqueness of af’qQ, we get that
X =ap . 0

When the idempotents p and q both have some small perturbations,

we have the following result:
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Theorem 4.7. Let a € &/ and p,q, p,q € &° such that al(,,z,’ql)

exists. If |p - p'| < L 5 and lag - 4| < =——. Then a( D exists and
1 +r)? 3tk 4
(2, l) (2 0) , ,
lopig — %0l @+w)(lp-pl+la-al) |
|m§§u ST+ w)p - ol vl - dT
— oDl
”(1 (2,0) ” < (1 + "q q ")"ap,q "

N 1-(1+8)|p- P -xlg-q]"

Proof. By Theorem 4.4, af,’f]) exists when |p - p'| < _r and in

k)
this case
(2 )
.
1—0+ﬁwp ol P4
So |lg - ¢’ < T < L (2 0 and consequently, ag’(l]), exists by
" 2+ affla |

Theorem 4.6. Finally, by Theorems 4.4 and 4.6, we have

lay ¢ = gl < layg) - a gl + haiizg - i

+lallat® g - q]

o@D+ Lol =Pl @)
||a||||a2”|||| q| 1-(1+s)p- P
2,1
G+0)@-lp-pDla-q] %D

T 1-(+x)|p-p-xlg-q]1-0+xr)|p- P

1 +r)|p - P Y]
1-(+x)[p-p| ™74

_ U)o -pltfe—al) ey
1-(@+r)[p-pl-rlg-q]™ 7"
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NCR)
@.10) @0 (21 (2.1) @+l - g PDlapy’l
and [a, ol < llay: g —apg |+ ||a <<= A+r)p-p]-xlg-q|

Now, we consider the case when the elements a, p, ¢ € &° all have

some small perturbations.

Theorem 4.8. Let a, a € & and p, q, p', ¢ € &° such that al(vz,’ql)

. 1 1 2K,
exists. If ||p - p'| < g =4qll < , and |la da| < ——F———.
Io-pl< e =al< g and il < (i
—(2,1) .
Then ay’ o exists and
' 2,1
[0 < (+]g - aDlafy|

1-@+w)p - o] -slg - ¢ - @+l -aD]alZD]]sq]
[
la&D)

layy - il <
1-@+r)p =Pl -xla - q

(1 +[q - ) 8a] 22|
. ; p y '
1-(+x)|p- o -wla - a|- @ +]a - a])]aZD][3q]

+x)(lp - P+ g —q+

Proof. Theorem 4.7 indicates that a'7’’, exists and

(l
r.q

ot (2 0) D) < 1+q-q ||)||a(2 D) -+ H)(4 +K) " @, z)"
-1 +x)|p - P -xlg - <

2,1 (2,1) .. .
Thus, |la,/[[5a| <1 and hence 1+a;’/8a is invertible. Therefore,

(2,7) . —(2,0) _ _(2,]) (2,0) -1
a,’ , exists and ayy = ap,’q,(l + Saap,’q,) by Theorem 3.4. Now by
Theorem 4.7, we have
a1

la i) s —L2d
2,1
1-al% D] [q

[t + g - a]]a@2
, 2,1 ’
1-[1+x]lp - P - wlg - | - [L + |a - ¢1]aZD] |3a]

<
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and

1@ - a@D) <1+ a3 Doa) ol D — a2 D)+ 163D - af2))
[8al a2 &) a2)
1 - [6a] |a! 50 ”u

[
lal 0|

T 1-@0+w)|p- P -xlg-4q

12
1+ o - g Plpellafy |
. ; Mo @ ’
1= +8)lp = Pl =sla -l -+ fa - gDl 3]

@ +&)(lp - pl+la-ql)+

This completes the proof. a
By using perturbation theorems for the generalized inverse ag’ql), we

can also investigate the perturbation analysis for the generalized inverse

(1 2) under some conditions.

Corollary 4.9. Let a € & and p, q € &° such that ag”g) exists.
Suppose that p' € &° with |p - p'| < 1 5 and ap’ = a. Then ag/ 2)
(1+k)
exists and
1,2 1,2
layd bl _aenlp—pl a2y < — 5id|
||a§,%;>|| ST+l Al Pralm1-(+x)|p - Pl

Proof. Set b = ag’ ). Then bab = b, aba = a,ba = p,1-ab =gq,

2
»q

and ag’ql) = ag”q) = b. By Theorem 4.4, afv é) is exists and
2,0 _ 1 2) , 1,2
2524 I @l =pl 20 lape

<
||a1(v2,ql)|| =1- 1 +x)|p" - Pl vl 1- (1+'<‘~)||p ol
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(1,2) _ ,(2,0) F_ g2
g =% g in this case. Put b’ = ap e

Then b'ab' =b', (b'a)e = p'o/,(1 —ab ) =qa/. Thus (1-q)(1-ab’)=0
and hence 1-¢q =(1-q)adb’ = abab' = ab'. Furthermore, aba =
(1-gq)a = aba = a. From (b'a)e/ = p'e/, we get that (1 - d'a)p’ = 0 and

p' = bap' = b'a. Therefore, b’ = ag ?1)

We need only to show that a

O
We need the following easy representation lemma for ag 3) :

Lemma 4.10. Let a € & and p, ¢ € &° such that agy’ ) exists. Let

we o such that wa=p and aw =1-q. Then ag,’qz) = (wa)#w =

w(aw)”.
Proof. Obviously, wa, aw € &8 for wa = p and aw =1-q. We
also have (wa)” = p and (aw)” =1-gq. Then by using the uniqueness

of ag,’(?), we can prove our lemma by simple computation. O

Corollary 4.11. Let a € & and p, q € &° such that ag,’g) exists.

Suppose that q' e &° with |q-q < 3 and a =(1-q")a. Then

(1’2) /
; n
a, exists and

)

[ - 1
o <Ll g oy« Ly

lab2)  1-kla-ql 1-xlq" -4

(2) If there are some w,v € & with wa = p =va, aw =1-¢q, and

av =1-q'. Then

1,2 1,2 1’2
a;,q,) = al(u,q) + ag,q)(av)#a(v _ w)q

Proof. af’ql,) exists by Theorem 4.6. From a = (1 - ¢')a and Lemma

(1,2)

1 (172) 3 (271) —
2.2, we can obtain that ay o exists and ay’y = a0
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Now, the estimates in (1) and the representation for ag’;) n (2)

follow from Theorem 4.6 and Lemma 4.10. O

: 1 ,
If lp-pPl<—= lla-4q]<
k)

a
p

@

'
’

(2]

(3]

(4]

(5]

(6]

(7]

Finally, by Corollaries 4.9, 4.11, and Theorem 4.7, we have

Corollary 4.12. Let a € & and p, q, p', ¢ € &° with a\l2) exists.

2)

’

b,q

. 3 Jlr = and ap'=a=(1-q')a. Then
+

exists and

L2 _ 0.2 ’ |
le5is — 2via ) c 0+8)Up-pl+la-ql) .
T I e I R |

||a(1’2)|| < (1 +]lg - q’ll)llag,’(?))ll
Pt T 1 -1 +w)|p-pl-xlg -4l
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