NONOBLATENESS OF A GENERATING CONE IN
SH-SPACE AND ITS APPLICATION

E. I. SMIRNOV, G. E. KOZLOV, V. V. BOGUN
and A. D. UVAROV

South Mathematical Institute Russian
Academic of Science and NO-Alania
Yaroslavi State Pedagogical University
150000 Yaroslavi
Respublianskaya 108
Russia
e-mail: smirnov@yspu.org

Abstract

The concept of a nonoblate cone in a Banach space is one of the most important ideas in the theory of ordered normed linear spaces. In connection with the introduction, the new class of SH-spaces by Smirnov (the H-spaces as Souslin spaces earlier), the problem of clarifying the role of the concept of nonoblateness of a cone in such spaces arises naturally. In the present paper, we will obtain a theorem about the nonoblateness of a generating cone in an SH-space and demonstrate a series of its applications to questions of differentiability with respect to a cone and of the continuity of a positive operator. This will allow us to obtain a theorem on the existence of a saddle point of the Lagrange function for linear optimization problems in SH-spaces.

2010 Mathematics Subject Classification: 47B65, 46A40, 46A13.
Keywords and phrases: nonoblate cones, locally convex spaces, Kuhn-Tacker theorem, compact differentiability, closed graph theorem.
Communicated by Jong Kwang Yoo.
Received June 27, 2014
1. Nonoblate Cones in SH-Spaces

We recall [2] that a cone K in a locally convex space (LCS) X is said to be nonoblate if for each neighbourhood of zero U, there exists a neighbourhood of zero V for which $V \subset U \cap K - U \cap K$. The theory of differentiation in an LCS as developed in [1] is used systematically. All topological vector spaces considered are assumed to be separated and locally convex.

Let (G, τ) be a locally convex metric topological vector group (TVG) and K be a closed generating cone in G. We will denote by d a quasinorm defining the topology τ, i.e., a nonnegative functional on G, which satisfies the conditions:

(a) $0 \leq d(x) \leq 1$ \quad ($x \in G$);

(b) $d(\lambda x) \leq d(x) \quad (|\lambda| \leq 1, x \in G)$;

(c) $d(x_1 + x_2) \leq d(x_1) + d(x_2) \quad (x_1, x_2 \in G)$.

The quasinorm

$$\tilde{d}(x) = \inf \{d(u) + d(v): x = u - v, u, v \in K\},$$

defines on G the topology $\tilde{\tau}$ of a locally convex TVG in which a base of absolutely convex neighbourhoods of zero is formed by the sets

$$V_n = K \cap U_n - K \cap U_n \quad (n = 1, 2, \ldots),$$

where $\{U_n: n = 1, 2, \ldots\}$ is a base of absolutely convex neighbourhoods of zero in the topology τ. It is clear that $\tau \leq \tilde{\tau}$.

Proposition 1. If (G, τ) is a complete TVG, then it follows from convergence in (G, τ) of the series:

$$x = \sum_{n=1}^{\infty} x_n,$$

(1)
\[\tilde{d}(x) \leq \sum_{n=1}^{\infty} \tilde{d}(x_n). \]

Proof. Suppose that the series (1) converges in \((G, \tau)\) and the right-hand side of inequality (2) is finite. Then for every \(\epsilon > 0\), there exist sequences \(u_n \in K\) and \(v_n \in K\) for which \(x_n = u_n - v_n\) and

\[d(u_n) + d(v_n) \leq \tilde{d}(x_n) + 2^{-n}\epsilon. \]

Since \((G, \tau)\) is a complete TVG, it follows from this that there exist elements \(u, v \in K\) for which \(x = u - v\) and

\[\tilde{d}(x) \leq d(u) + d(v) \leq \sum_{n=1}^{\infty} [d(u_n) + d(v_n)] \leq \sum_{n=1}^{\infty} \tilde{d}(x_n) + \epsilon. \]

Inequality (2) follows from this since \(\epsilon > 0\) is arbitrary. The proposition is proved.

From Proposition 1 and the completeness of \((G, \tau)\), we deduce that any series (1) for which the right-hand side of inequality (2) is finite converges in \((G, \tau)\). Hence we have

Proposition 2. The TVG \((G, \tilde{\tau})\) is complete.

Proof. Let \((x_n)\) be a fundamental sequence in \((G, \tilde{\tau})\). We choose a subsequence \((x_{n_k})\) such that

\[\tilde{d}(x_{n_{k+1}} - x_{n_k}) < 2^{-k} \quad (k = 1, 2\ldots). \]

Then

\[\sum_{k=1}^{\infty} \tilde{d}(x_{n_{k+1}} - x_{n_k}) < \infty, \]
and consequently, the series

\[x_{n_1} + \sum_{k=1}^{\infty} (x_{n_{k+1}} - x_{n_k}), \]

converges in \((G, \tau)\). In the other words, the subsequence \((x_{n_k})\), and along with it also the sequence \((x_n)\), converge in \((G, \tau)\). The proposition is proved.

Theorem 1. Let \((X, \tau^*)\) be an SH-space and \(K\) be a generating closed cone in \(X\). Then \(K\) is a nonoblate cone.

Proof. Let \((X, \tau^*)\) be an SH-space and \(K\) be a generating closed cone in \(X\). Let

\[X = \bigcup_{\nu \in \mathcal{P}} \bigcap_{k=1}^{\infty} X_{n_1n_2...n_k}, \]

be such that \(\tau^*\) is the strongest locally convex topology on \(X\) for which all the embeddings of the locally convex metric TVGs \(X_{(\nu)}(\nu \in \mathcal{P})\) in the space \((X, \tau^*)\) are continuous. Without loss of generality, it can be assumed that the spaces \(X_{n_1n_2...n_k}(n_k, k = 1, 2, \ldots)\) are seminormed and the embeddings

\[X_{n_1n_2...n_k+1} \to X_{n_1n_2...n_k} \quad (k = 1, 2, \ldots; \nu \in \mathcal{P}), \]

are continuous. Here \(\mathcal{P}\) is a subset of \(\mathbb{N}^*\), the set of sequences of positive integers.

Let \(\nu = (n_1, n_2, \ldots) \in \mathcal{P}\). We will denote by \(\{U_{n_1n_2...n_k} : k = 1, 2, \ldots\}\) the family of absolutely convex neighbourhoods of zero in a base for the space \(X_{(\nu)}\), which are such that for all \(k = 1, 2, \ldots\), the set \(U_{n_1n_2...n_k}\) is a neighbourhood of zero in \(X_{n_1n_2...n_k}\) and \(2U_{n_1n_2...n_{k+1}} \subseteq U_{n_1n_2...n_k}\). Then the sets
\[V_{n_1n_2...n_k} = U_{n_1n_2...n_k} \cap K - U_{n_1n_2...n_k} \cap K \quad (k = 1, 2, \ldots), \]

generate absolutely convex and their linear hulls \(L(V_{n_1n_2...n_k}) = Y_{n_1n_2...n_k} \) can be given seminorm topologies in such a way that for each \(k = 1, 2, \ldots \), the sets \(\epsilon V_{n_1n_2...n_k} (\epsilon > 0) \) form a base of neighbourhoods of zero. It is not difficult to see that

\[X = \bigcup_{v \in \mathcal{P}} \bigcap_{k=1}^{\infty} Y_{n_1n_2...n_k}, \]

and moreover, the sequence \(V_{n_1n_2...n_k} \) forms a base of absolutely convex neighbourhoods of zero for some TVG \(Y_{(v)} \). Since the space \(X_{(v)} \) is complete, then by Proposition 2, the TVG \(Y_{(v)} \) is also complete.

Now, let us consider on \(X \) the strongest locally convex topology \(\sigma^* \) for which all the embeddings of the spaces \(Y_{(v)} (v \in \mathcal{P}) \) in the space \((X, \sigma^*) \) are continuous. Then \((X, \sigma^*) \) is an \(SH \)-space and moreover \(\tau^* \leq \sigma^* \). By the Closed Graph Theorem for \(SH \)-spaces, we have the inequality \(\sigma^* \leq \tau^* \). The assertion of the theorem now follows since by construction the cone \(K \) is nonoblate in \((X, \sigma^*) \). The theorem is proved.

Corollary 1. Let \(K \) be a generating closed cone in a sequentially complete bornological \(SH \)-space \((X, \tau) \). Then \(K \) is a nonoblate cone.

This assertion follows from Theorem 1 and Proposition 7.3.5 of [4].

2. Compact Differentiability with Respect to a Cone

Let \(X \) and \(Y \) be LCSs, \(K \) be a closed cone in \(X \) and \(L(X, Y) \) be the vector space of all continuous linear mappings from \(X \) to \(Y \). We will denote by \(\beta \) (resp., \(\beta_c \)) the system of all bounded (resp., compact) subsets
of the space X, and by β_k (resp., β_k^c) the system of all bounded (resp., compact) subsets of the cone K. Let $L_{\beta}(X, Y)$ (resp., $L_{\beta_k}(X, Y)$) be the LCS obtained by giving the space $L(X, Y)$ the topology of uniform convergence on the sets of the system β (resp., β_k).

We will say (see also [2]) that the operator $A : X \to Y$ is differentiable at the point $x_0 \in X$ in the directions of the cone K, if the function $y(t) = A(x_0 + th)$ is differentiable with respect to t at the point $t = 0$ for all $h \in K$. If the derivative $y'(0)$ is representable in the form $y'(0) = A'(x_0)h(h \in K)$, where $A'(x_0) \in L(X, Y)$, then we will call the linear operator $A'(x_0)$ the weak derivative with respect to the cone K at the point x_0.

If the identity

$$\lim_{t \to 0} \frac{y(t) - y(0)}{t} = A'(x_0)h,$$

is satisfied uniformly with respect to $h \in B$ for each B from β_k (resp., β_k^c), then we will call $A'(x_0)$ the bounded (resp., compact) derivative with respect to the cone K at the point x_0. Mappings which have a weak, bounded or compact derivative with respect to a cone will be called weakly, boundedly or compactly differentiable with respect to the cone.

Let (X, τ) be a separated sequentially complete bornological SH-space, i.e.,

$$X = \bigcup_{\nu \in \mathcal{P}} \bigcap_{k=1}^{\infty} X_{n_1n_2\ldots n_k},$$

and each space $X_{(\nu)}$ $(\nu \in \mathcal{P})$ is a locally convex complete metric TVG, which is continuously embedded in (X, τ). The topology τ of the space X induces on each space.
\[X_\nu = \bigcap_{k=1}^{\infty} X_{n_1n_2...n_k}, \]
a locally convex topology \(\tau_\nu \) which in general is different from the topology \(\tau_\nu \) of the Fréchet space \(X_\nu (\nu \in \mathcal{P}) \). We will assume that \(\tau_\nu = \tilde{\tau}_\nu \) for each \(\nu \in \mathcal{P} \).

Theorem 2. Suppose that for the operator \(A : X \to Y \) the weak derivative \(A'(x) \) with respect to a generating closed cone \(K \) is a continuous mapping into \(L_{\mathcal{P}_\nu}(X, Y) \) on an open neighbourhood \(U \) of the point \(x \). Then \(A'(x) \) is the compact derivative of the operator \(A \) at the points \(x \in U \).

Proof. By Corollary 1, the cone \(K \) is nonoblate in the space \((X, \tau) \) and we have the identity
\[X = \bigcup_{\nu \in \mathcal{P}} \bigcap_{k=1}^{\infty} Y_{n_1n_2...n_k}, \]
where the \(Y_{n_1n_2...n_k} \) \((n_k, k = 1, 2, ...)\) are seminormed spaces and the cone \(K \) is nonoblate in each locally convex TVG \(Y(\nu)(\nu \in \mathcal{P}) \). We have to show that
\[\lim_{\delta \to 0} \frac{A(x + \delta h) - A(x)}{\delta} = A'(x)h, \quad (3) \]
where \(x \in U \) and convergence is uniform with respect to all \(h \in B \) for every \(B \in \beta_c \).

Let \(x \in U, B \in \beta_c \) and let \(W \) be a convex neighbourhood of zero in the space \(Y \). Since the space \((X, \tau) \) is sequentially complete, the set \(B \) is contained and bounded in some space \(Y_\nu \), where \(\nu \in \mathcal{P} \). By the Closed Graph Theorem, there exists \(\nu' \in \mathcal{P} \) such that \(Y_\nu \subset Y_{\nu'} \). But \(\tau_\nu = \tilde{\tau}_\nu \); therefore, the set \(B \) is compact in \(Y_\nu \) and thus it is compact in \(Y_{\nu'} \). By
Corollary 1 of [3], there is a sequence \((h_n)\) converging to zero in \(Y_{\nu'}\) such that \(B\) is contained in the closed absolutely convex hull of \((h_n)\). Because of the nonoblateness of the cone \(K\) in the space \(Y_{\nu'}\), there exist sequences \((u_n)\subset K\) and \((v_n)\subset K\) for which \(h_n = u_n - v_n\) and \(u_n \to 0, v_n \to 0\) as \(n \to \infty\) in the space \(Y_{\nu'}\). Hence it follows that \(B \subset S - S\), where \(S\) is compact in \((X, \tau)\) and \(S \in \mathbb{P}_c^k\).

Choose \(\delta_0 > 0\) such that \(x + \delta h \in U, x + \delta u \in U,\) and \(x + \delta v \in U,\) where \(|\delta| \leq \delta_0\) and \(h = u - v, h \in B, u, v \in S.\) We introduce the notation

\[
\omega(x, \delta h) = A(x + \delta h) - A(x) - A'(x)\delta h.
\]

It is obvious that

\[
\omega(x, \delta h) = A(x + \delta h) - A(x + \delta h + \delta v) + A(x + \delta h + \delta v) - A(x) - A'(x)\delta h.
\]

Hence by the continuity of \(A'(x)\) at the point \(x,\) we obtain the following identities:

\[
\omega(x, \delta h) = - \int_0^1 A'(x + \delta h + t\delta v)\delta v dt + \int_0^1 A'(x + t(\delta h + \delta v))(\delta h + \delta v)dt
\]

\[
- \int_0^1 A'(x)\delta h dt
\]

\[
= \int_0^1 [A'(x) - A'[x + \delta h + t\delta v]]\delta v dt
\]

\[
+ \int_0^1 [A'(x + t\delta u) - A'(x)]\delta u dt.
\]

Again, by the continuity of \(A'(x)\), there exists a neighbourhood of zero \(P\) in the space \((X, \tau)\) such that for all \(u, v \in S,\) we have the inclusions

\[
[A'(x) - A'(x + P)]v \subset \frac{1}{2} W,
\]
and

\[[A'(x + P) - A'(x)]u \subset \frac{1}{2} W. \]

Since the set \(S \) is bounded in \((X, \tau)\), there exists \(\delta_W > 0 \) such that for \(\|x\| < \delta_W \), we have (as a result of (4)) the inclusions

\[\frac{\omega(x, \delta h)}{\delta} \subset \frac{1}{2} W + \frac{1}{2} W = W. \]

Now (3) follows from these inclusions. The theorem is proved.

Corollary 2. Let \((X, \tau)\) be the strict inductive limit of the sequence \(\{X_n : n = 1, 2, \ldots\} \) of Fréchet-Montel spaces and let \(K \) be a generating closed cone in \((X, \tau)\). Then if the weak derivative \(A'(x) \) with respect to the cone \(K \) of the operator \(A : X \to Y \) is a continuous mapping into \(L_\beta(X, Y) \) on the open neighbourhood \(U \) of the point \(x \), it is the bounded derivative of the operator \(A \) at the points \(x \in U \).

3. The Lagrange Function in SH-Spaces

In this section, we give the application already mentioned of Theorem 1 to the linear optimization problem in an LCS. Suppose that it is required to minimize the functional \(f(x) \) under the condition \(Ax \geq y_0 \), where \(X \) and \(Y \) are LCSs, \(A : X \to Y \) is a continuous linear operator, \(f \) is a continuous linear functional on \(X \); (inequalities in \(Y \) are to be understood in the sense of the ordering defined by the cone \(K \)).

We recall [5] that a point \((x_0, y_0') \in X \times K_{Y'}\) is called a **saddle point** of the Lagrange function

\[H(x, y') = f(x) - y'(Ax - y_0), \]

if

\[H(x, y_0') \geq H(x_0, y_0') \geq H(x_0, y') \quad (x \in X, y' \in K_{Y'}). \]

Below we denote by \(Y_0 \) the linear hull in \(Y \) of an element \(y_0 \) and the subspace \(AX \) and by \(M \) the set \(\{x : Ax \geq y_0\} \).
Theorem 3. Let Y be a sequentially complete bornological SH-space and let K_Y be a generating closed cone in Y; suppose moreover that $Y = Y_0 - K_Y$. Then, the functional f attains a minimum on the set M if and only if the corresponding Lagrange function $H(x, y')$ has a saddle point $(x_0, y'_0) (x \in X, y' \in K_Y)$.

For the proof, it is enough to refer to Corollary 1 and Theorem 9 of [5].

4. Conclusion

Using the closed graph theorem is the important resource for applying of space Y. Such condition for space Y is being SH-space of Smirnov. In particular, this class contains of Fréchet spaces and spaces $D'(\mathbb{R}^n)$ of generalized functions. So such approach lead to an expansion of mathematical models for economic tasks of optimum control in locally convex spaces.

References

