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Abstract

The concept of a nonoblate cone in a Banach space is one of the most important
ideas in the theory of ordered normed linear spaces. In connection with the
introduction, the new class of SH-spaces by Smirnov (the H-spaces as Souslin
spaces earlier), the problem of clarifying the role of the concept of nonoblateness
of a cone in such spaces arises naturally. In the present paper, we will obtain a
theorem about the nonoblateness of a generating cone in an SH-space and
demonstrate a series of its applications to questions of differentiability with
respect to a cone and of the continuity of a positive operator. This will allow us
to obtain a theorem on the existence of a saddle point of the Lagrange function

for linear optimization problems in SH-spaces.
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1. Nonoblate Cones in SH-Spaces
We recall [2] that a cone K in a locally convex space (LCS) X is said to

be nonoblate if for each neighbourhood of zero U, there exists a
neighbourhood of zero V for which V. <« UN K - U K. The theory of

differentiation in an LCS as developed in [1] is used systematically. All
topological vector spaces considered are assumed to be separated and

locally convex.

Let (G, 1) be a locally convex metric topological vector group (TVG)

and K be a closed generating cone in G. We will denote by d a quasinorm

defining the topology T, i.e., a nonnegative functional on G, which

satisfies the conditions:
(@ 0<dkx)<1 (xeQ)
(b) d(ix) < d(x) (M| <1, x € G);
(©) dlx; +xg) < d(xy) +dlxg) (a1, 29 € G).
The quasinorm
d(x) = inf{d(x) + dv): x = u - v, u, v € K},

defines on G the topology T of a locally convex TVG in which a base of

absolutely convex neighbourhoods of zero is formed by the sets
V,=KNU, -KNU, ©n=1,2,..),

where {U, : n =1, 2, ...} is a base of absolutely convex neighbourhoods of

zero in the topology . It is clear that T < 7.

Proposition 1. If (G, 1) is a complete TVG, then it follows from

convergence in (G, T) of the series:

X = ixn’ (1)

n=1
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that

d(x) < Z(}(xn). ©@)
n=1

Proof. Suppose that the series (1) converges in (G, 7) and the right-
hand side of inequality (2) is finite. Then for every e > 0, there exist

sequences u, € K and v,, € K for which x,, = u, —v, and
d(w,)+d(v,) < d(x,)+ 2"

Since (G, 7) is a complete TVG, it follows from this that there exist

elements u, v € K for which x = u — v and

d(x) < d(u) + d(v) < Z[d(un)+ d@v,)] < Z&(xn) + e
n=1 n=1

Inequality (2) follows from this since ¢ > 0 is arbitrary. The proposition

is proved.

From Proposition 1 and the completeness of (G, ), we deduce that

any series (1) for which the right-hand side of inequality (2) is finite

converges in (G, 7). Hence we have
Proposition 2. The TVG (G, 7) is complete.
Proof. Let (x,,) be a fundamental sequence in (G, 7). We choose a

subsequence (x,, ) such that

A, — %) <27 (k=12..)

g1

Then

© ~
Zd(xnk+1 ~ ) < e,
k=1
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and consequently, the series

o0

Xy * Z(xnk+1 ~ ),

k=1
converges in (G, 7). In the other words, the subsequence (x,, ), and

along with it also the sequence (x,,), converge in (G, 7). The proposition

is proved.

Theorem 1. Let (X, v°) be an SH-space and K be a generating closed

cone in X. Then K is a nonoblate cone.

Proof. Let (X, 7*) be an SH-space and K be a generating closed cone
in X. Let

X = U ﬁannz...nk7

veP k=1

be such that 1" is the strongest locally convex topology on X for which all
the embeddings of the locally convex metric TVGs X(,)(v € P) in the

space (X, t*) are continuous. Without loss of generality, it can be

assumed that the spaces X,, ,, ., (7, k =1, 2,...) are seminormed and
the embeddings

X -

mng.. .41

anng...nk (k = 15 27 7 Ve P),

are continuous. Here P is a subset of N, the set of sequences of

positive integers.

Let v = (ny, ng, ...) € P. We will denote by {U,,

gy k=12 .

the family of absolutely convex neighbourhoods of zero in a base for the

space X(,), which are such that for all £ =1, 2, ..., the set Uy, ,, 1sa

neighbourhood of zero in X, ,, ., and 2Up . n,., © Uppny..n, - Then

the sets
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annQ...nk = Un1n2..,nk ﬂ K - Un1n2...nk n ‘K (k = 1? 2’ )’

=Y,

are absolutely convex and their linear hulls L(V,, nng..ny, Can

1”2---”k)
be given seminorm topologies in such a way that for each k =1, 2, ...,

the sets €V,

nyng...n, (€ > 0) form a base of neighbourhoods of zero. It is not

difficult to see that

X = U ﬁYnlnz...nk’

veP k=1

and moreover, the sequence V, forms a base of absolutely convex

1n9...Ng
neighbourhoods of zero for some TVG Y{,). Since the space X, is

complete, then by Proposition 2, the TVG ) is also complete.

Now, let us consider on X the strongest locally convex topology ¢~ for

which all the embeddings of the spaces Y(,)(v € P) in the space (X, c")

are continuous. Then (X, ¢*) is an SH-space and moreover 7° < ¢". By

the Closed Graph Theorem for SH-spaces, we have the inequality

" < 1*. The assertion of the theorem now follows since by construction

the cone K is nonoblate in (X, ). The theorem is proved.

Corollary 1. Let K be a generating closed cone in a sequentially

complete bornological SH-space (X, 7). Then K is a nonoblate cone.

This assertion follows from Theorem 1 and Proposition 7.3.5 of [4].
2. Compact Differentiability with Respect to a Cone

Let X and Y be LCSs, K be a closed cone in X and L(X, Y) be the

vector space of all continuous linear mappings from X to Y. We will

denote by B (resp., B,.) the system of all bounded (resp., compact) subsets
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of the space X, and by B (resp., Bf) the system of all bounded
(resp., compact) subsets of the cone K. Let Lg(X, Y) (resp., Lg, (X,Y)) be

the LCS obtained by giving the space L(X, Y) the topology of uniform

convergence on the sets of the system B (resp., B.).

We will say (see also [2]) that the operator A: X — Y is
differentiable at the point xy € X in the directions of the cone K, if the

function y(t) = A(xq + th) is differentiable with respect to ¢ at the point
t =0 for all h e K. If the derivative y'(0) is representable in the form
y'(0) = A'(xg)h(h € K), where A'(xg) € L(X, Y), then we will call the
linear operator A'(xy) the weak derivative with respect to the cone K at

the point x.
If the identity

L

is satisfied uniformly with respect to h € B for each B from B, (resp.,

BY), then we will call A'(xy) the bounded (resp., compact) derivative
with respect to the cone K at the point x;. Mappings which have a weak,
bounded or compact derivative with respect to a cone will be called
weakly, boundedly or compactly differentiable with respect to the cone.
Let (X,T) be a separated sequentially complete bornological

SH-space, 1.e.,

X = U an1n2...nk7

veP k=1

and each space X, (v € P) is a locally convex complete metric TVG,

which is continuously embedded in (X, 7). The topology T of the space X

induces on each space
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o0
X, = ﬂannz...nk >
k=1

a locally convex topology T, which in general is different from the
topology T, of the Fréchet space X, (v € P). We will assume that

T, =T, foreach v e P.

Theorem 2. Suppose that for the operator A :X — Y the weak

derivative A'(x) with respect to a generating closed cone K is a continuous

mapping into LBC (X, Y) on an open neighbourhood U of the point x. Then

A'(x) is the compact derivative of the operator A at the points x € U.

Proof. By Corollary 1, the cone K is nonoblate in the space (X, T)

and we have the identity

X = U ﬁYn1n2...nk’

veP k=1

where the Y,

wng..ny (s K =1,2,..) are seminormed spaces and the
cone K is nonoblate in each locally convex TVG Y(U)(v e P). We have to

show that

lim A(x + 8h) — A(x)

350 ) = A, 3)

where x € U and convergence is uniform with respect to all A~ € B for

every B € f,.

Let x e U, B € B, and let W be a convex neighbourhood of zero in
the space Y. Since the space (X, T) is sequentially complete, the set B is
contained and bounded in some space Y,,, where v € P. By the Closed
Graph Theorem, there exists v’ € P such that Y, c Y. But 7, = 7;

therefore, the set B is compact in Y, and thus it is compact in Y,,. By
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Corollary 1 of [3], there is a sequence (h,,) converging to zero in Y, such
that B is contained in the closed absolutely convex hull of (h,,). Because

of the nonoblateness of the cone K in the space Y,), there exist

sequences (u,) < K and (v,) ¢ K for which A, = u, —v, and u, — 0,

v, = 0 as n — o in the space Y{,). Hence it follows that B = S - S,
where S is compact in (X, 7) and S e BF.

Choose 65 > 0 such that x +6h e U, x + du € U, and x + v € U,

where 8| < 8y and h = u-v, h € B, u, v € S. We introduce the notation
o(x, 8h) = A(x + 5h) — A(x) — A'(x)5h.
It is obvious that
o(x, 8h) = A(x + dh) — A(x + 8h + v) + A(x + 8h + dv) — A(x) — A'(x)dh.
Hence by the continuity of A'(x) at the point x, we obtain the following

identities:

1 1
o(x, 5h) = -j Al(x + 5k + t50)Svdt + j A'(x + 1(5h + 5v)) (5h + dv)dt
0 0
1
- _[ A'(x) Shdt
0

_ I;[A’(x) — A'lx + 5h + tov]]svdt

+ JI[A'(x + tdu) — A'(x)]dudt. 4)
0

Again, by the continuity of A’(x), there exists a neighbourhood of zero P

in the space (X, 7) such that for all u, v € S, we have the inclusions

[A'(x) - A'lx + P)]v © %W,
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and
[A'(x + P)- A'(x)]u c %W

Since the set S is bounded in (X, 7), there exists 8y > 0 such that
for 3] < 8y, we have (as a result of (4)) the inclusions

o(x, 8h) o1

1
5 2W+§W—W.

Now (3) follows from these inclusions. The theorem is proved.

Corollary 2. Let (X, 7) be the strict inductive limit of the sequence
{X,, :n=1,2,..} of Fréchet-Montel spaces and let K be a generating
closed cone in (X, 7). Then if the weak derivative A'(x) with respect to
the cone K of the operator A : X — Y is a continuous mapping into

Lﬁ(X, Y) on the open neighbourhood U of the point x, it is the bounded

derivative of the operator A at the points x € U.
3. The Lagrange Function in SH-Spaces

In this section, we give the application already mentioned of Theorem
1 to the linear optimization problem in an LCS. Suppose that it is

required to minimize the functional f(x) under the condition Ax > y,,

where X and Y are LCSs, A : X — Y 1is a continuous linear operator, f is
a continuous linear functional on X; (inequalities in Y are to be

understood in the sense of the ordering defined by the cone K).

We recall [5] that a point (xq, yp) € X x Ky is called a saddle point

of the Lagrange function
H(x, y') = f(x) - y'(Ax = y9),
if
H(x, yp) = H(xg, 0) 2 H(xp, »') (x € X, 3" € Ky).

Below we denote by Y, the linear hull in Y of an element y, and the

subspace AX and by M the set {x : Ax > y;}.
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Theorem 3. Let Y be a sequentially complete bornological SH-space
and let Ky be a generating closed cone in Y, suppose moreover that

Y =Y, — Ky. Then, the functional f attains a minimum on the set M if
and only if the corresponding Lagrange function H(x, y') has a saddle
point (xg, yp) (x € X, y' € Ky).

For the proof, it is enough to refer to Corollary 1 and Theorem 9 of [5].

4. Conclusion

Using the closed graph theorem is the important resource for
applying of space Y. Such condition for space Y is being SH-space of
Smirnov. In particular, this class contains of Fréchet spaces and spaces

D'(R™) of generalized functions. So such approach lead to an expansion

of mathematical models for economic tasks of optimum control in locally

convex spaces.
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